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Abstract: The purpose of this paper is to improve our understanding of how urban water consumption 
depends on a set of influencing variables. The traditional methods for predicting urban water consumption 
are typically based on historical data and assumed that the data are linear and stationary over time. A 
significant gap exists in the future changes and associated uncertainties of the influencing variables that 
have not been dealt with adequately. Consequently, it would be difficult to propose reliable planning and 
management strategies for water consumption sustainability. This paper extends the previous research of 
urban water consumption by treating consumption prediction as a stochastic process. The predictions 
explore the uncertainties associated with each influencing variables and a combination of some of these 
variables. To demonstrate its relevance, the proposed method is applied to analyse urban water 
consumption of the City of Brossard, Quebec, Canada. Daily records of urban water consumption are 
divided into: 1) base water consumption, which reflects winter consumption, and 2) seasonal use, which 
depends on seasonal and climatic variables. Various climate and socio-economic variables are investigated 
as the major influencing variables of urban water consumption. The analysis uses probabilistic data mining 
techniques and produces quantitative results of the correlations among the variables as well as their 
influences on urban water consumption.  
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1 INTRODUCTION 

It is challenging to achieve sustainable management of urban water consumption (UWC). The challenges 
are partly due to an increase in urban population, rapid urbanization, and limited freshwater resources. This 
is particularly problematic for water-scarce countries. Even countries with abundant freshwater resources 
like Canada are facing the same issues. Canada has freshwater resources in different forms of water 
bodies; however, the sustainable management is a major issue in major cities and municipalities. Thus, it 
is important to study sustainable strategies for UWC. 

This paper chooses the City of Brossard in the metropolitan area of Montreal, Quebec, Canada, as a study 
site. The main land-use types in Brossard are residential and commercial with many parks scattered 
through the city (Eslamian et al. 2016). The previous two censuses, conducted in 2011 and 2016, show 
that the city had a population of 85,721 in 2016, representing a percentage growth of 8.13% from 2011. 
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According to the city by-law (Brossard 2019a), watering with sprinklers not equipped with a timer is 
permitted for even-numbered addresses on Wednesdays, Fridays and Sundays, while for odd numbered 
addresses permitted days are Tuesdays, Thursdays and Saturdays (Brossard 2019b). This example points 
to the need to manage both peak and daily-averaged water demands. There is also a need to plan future 
consumption under a changing climate. 

Previously, researchers have made good efforts to identify variables that influence UWC. Some researchers 
(Eslamian et al. 2016; Wong et al. 2010) decomposed complex UWC into components and associated each 
component with less complex factors. The decomposition gives base water consumption (BWC), seasonal 
water consumption (SWC), and calendrical use. Other researchers (Gato et al. 2007; Gato et al. 2005) 
decomposed UWC only into BWC and SWC. Parandvash and Chang (2016) proposed a regression model 
for estimates of per capita daily water demand. They formulated the demand as a function of seasonal 
variables; weather variables; indicators or dummy variables that reflect weekends, holidays and other data 
anomalies; unemployment rate; and long-term trend variables for the time period 1983-2012. Previous 
studies typically list temperature, precipitation, population, and income as key variables of UWC. Romano 
et al. (2014) expanded the list to include the altitude of the location in question; annual expenditure of 
residential households (tariff); utility ownership, including public utilities or non-public utilities; and the 
geographic location of the chief towns of Italian provinces, distinguishing between the northern, central, and 
southern regions of Italy. Romano et al. (2014) covered the time period of 2007-2009. From a different 
perspective, Kenney et al. (2008) suggested that water demand is a function of variables, which are within 
the control of water utilities. Such control includes water price; non-price strategies such as public 
education, technological improvement and water restriction; and other factors not related to weather and 
population. 

In majority of existing studies of urban water demand, the prediction techniques used are not capable of 
addressing uncertainties associated with the future changes in key variables. The existing studies have 
used regression models (Eslamian et al. 2016; Parandvash and Chang 2016; Stoker and Rothfeder 2014; 
Chang et al. 2014; Wong et al. 2010; House-Peters et al. 2010; Adamowski and Karapataki 2010; Polebitski 
and Palmer 2009; Praskievicz and Chang 2009; Kenney et al. 2008; Ruth et al. 2008; Gato et al. 2005), 
linear mixed effect models (Romano et al. 2014), and other methods. These methods include factor 
analysis, wavelet transform, and support vector machine. Some of the key variables are a random variable. 
The existing studies have not adequately addressed the issue of uncertainties associated with random 
variables that influence UWC. As a result, it has been a big challenge to develop reliable planning and 
management strategies for sustainable water consumption. 

UWC and its drivers contain abundant valuable information and data of climatic and socio-economic 
variables. Data mining is a powerful technique to extract valuable information from the data. Data mining is 
the process of extracting interesting patterns or knowledge from a huge amount of data, preferably in an 
efficient, scalable, and practical manner (Han and Kamber 2011). Previously, researchers adopted various 
data mining approaches and coupled them to create more advanced and capable tools for data mining. Yu 
et al. (2011) proposed clustering, decision tree, and association rule mining for studying of occupants’ 
behavior in residential buildings. Singh and Yassine (2018) used clustering analysis, association rule 
mining, and Bayesian network for the analysis and forecast of energy consumption time series. They 
extracted various temporal energy consumption patterns. Adamowski et al. (2012) proposed a method 
based on coupling discrete model wavelet-neural for short-term forecast of water consumption. They 
suggested using the bootstrap method in order to account for uncertainty, which has not been considered 
in the coupling discrete model. Tiwari and Adamowski (2013) developed a coupled model (wavelet-
bootstrap-neural network) for short-term forecasting. 

A further improvement of data mining techniques for application to UWC prediction is needed in order to 
obtain results that are more reliable. The purpose of this paper is to improve our understanding of how 
UWC depends on a set of key variables. Some of them display random characteristics. We propose a 
stochastic method for predicting UWC under changes in climatic variables. The method uses data mining 
techniques. In the following sections, we discuss the methodology (Section 2) and the results (Section 3), 
and finally conclusions (Section 4). 
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2 METHODOLOGY 

2.1 Data of daily water consumption 

In this paper, we use records of daily water consumption of the City of Brossard over the time period of 
January 2011 to October 2015. For this time period, we obtained climatic and socio-economic data. The 
climatic data include daily minimum temperature (Tmin), daily maximum temperature (Tmax), daily mean 
temperature (Tmean) and total precipitation. The climatic data were measurements made at Pierre Elliott 

Trudeau International Airport (45 28 11.06 N, 734441.71 W). The data source is Environment Canada. 
The socio-economic variables are population, age, water price, and household income, acquired from 
Statistics Canada. Following previous studies, as an initial trial, we divided the records of daily water 
consumption into: 1) BWC, which reflects winter consumption, and depends on such socio-economic 
variables as population, age and water price, and 2) SWC, which depends on seasonal and climatic 
variables. Using correlation methods, we assess a possible two-way linear association between two 
continuous variables. Since SWC and BWC are two separate drivers, we perform a correlation analysis for 
each. 

2.2 Preprocessing data 

It is important to pre-process data, to find outliers, replace missing values and transform the values. In this 

paper, the applicable preprocessing step in accordance with the available data is detecting outliers. Outliers 

are values, which behave differently from expectation (Han and Kamber 2011). Several approaches to 

outlier detection exist, including clustering-based methods and statistical methods. The statistical methods 

assume a normal distribution of data; therefore, values in a low probability region are considered as outliers. 

The clustering-based methods accept that outliers might belong to a small or sparse cluster or might be far 

from the clusters to which they are closest. 

We use both the clustering-based and statistical methods in this paper. By grouping UWC data, we identify 
potentially unexpected behaviours and reveal their hidden patterns on the basis of variations in air 
temperature. Subsequently, we apply the concept of maximum likelihood in statistical methods to those 
clusters that contain values with unusual behaviours. Specifically, UWC values outside the range of 𝜇 ± 2𝜎 

are labeled as the outlier, where  is the mean value, and  is the standard deviation. Note that  𝜇 ± 2𝜎 
contains 95% of data under the assumption of normal distribution.  

2.3 Cluster analysis 

The cluster analysis is a process of dividing the observed records into classes or clusters so that objects in 

the same cluster have a high similarity, while objects in a different cluster have a low similarity. k-means 

approach was used in this study. Clustering can be regarded as a form of classification, which creates 

labeling of objects with cluster labels derived from data. Hence, this methodology might be referred to as 

unsupervised classification. We ignore the effect of socio-economic variables and focus on climatic 

variables. Grouping the data by weather conditions leads to the identification temporal water consumption. 

Note that by applying clustering analysis, potential outliers are also detected.  

2.4 Bayesian network 

Bayesian networks are a graphical model based on Bayes’ theorem. They are capable of modeling 

probabilistic relationships among a set of variables (Heckerman, 1997). This methodology is considered as 

classification approach and it can potentially be used for prediction (Hawarah et al. 2010). One of the most 

significant characteristics of this approach is their ability to account for uncertainties associated with 

inaccurate and incomplete databases. The idea is to reveal the interdependency of variables in the form of 

probability distribution. In the Bayesian networks, variables of interest are represented as child nodes and 

parent nodes, and the links between them indicate informational or causal dependencies among them 

(Ismail et al. 2011). 
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We construct a Bayesian network in two steps. The first step is structure learning, which produces a 

graphical structure of dependencies between nodes. Even though a number of machine-learning algorithms 

are available for the determination of the number of parents based on the strength of the relationship 

between each pair of variables, this paper develops the structure on the basis of the meaningful 

interdependency of predictors and predictant. The second step is parameter learning, which determines a 

conditional probability distribution among nodes. Initially, the number of intervals should be defined on the 

basis of user’s choice. In this study, the variables are continuous. As a result, we can discretize data in 

either equal distance or equal frequency. The latter is less sensitive to outliers and provides better accuracy, 

it is chosen in this paper.  

3 RESULT 

Clustering analysis is unsupervised learning due to the fact that the class label is unknown. It is necessary 

to determine a clustering algorithm and the number of desired clusters. In k-means algorithm, we evaluate 

the sufficient number of clusters and the records in each cluster, using the elbow method. 

 

Figure 1: Determination of the number of clusters using elbow method 

In Figure 1, it is clear that three clusters will be enough to create the clusters. Generally speaking, air 

temperature in the region of Montreal varies considerably during the day. Therefore, clustering analysis 

includes SWC, Tmin, Tmax and even Tmean as variables.  
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Figure 2: UWC vs. Tmean, showing the clusters (red, blue and yellow data points) 

 

 

Figure 3: Time series of UWC, showing the clusters (red, blue and yellow data points) 

 

According to Figures 2 and 3, UWC has meaningful patterns: cluster 1 (red data points) represents BWC, 

which is mostly the water consumption in cold season (between November and April); cluster 0 (blue data 

points) is SWC, which includes warm season (between May and October). Cluster 0 confirms the positive 

correlation between SWC and Tmean. On the contrary, the data points for the period of January – May 2011 
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do not follow the dominant patterns of UWC for the other years. These data points, along with three other 

data points for 2012 and 2013, belong to cluster 2 (yellow data points) and are considered as outliers. 

Moreover, in Figure 3, a number of BWC data points display unexpected behaviours. They are removed 

using the maximum likelihood approach and are excluded from subsequent analysis. 

We present the results from correlation analysis for both SWC and BWC, along with their key influencing 

variables, in Tables 1 and 2. In Table 1, the population is organised into three age groups: child (0 – 14 

year old), young adult (15 – 29 year old), and senior adult (30 years or older). 

Table 1: Correlation coefficient for BWC and its key influencing variables 

Attributes Child Young 
adult 

Senior 
adult 

Payment 
(CAD/ 

household) 

Water 
price 

(CAD) 

Income 
(CAD/ 

household) 

BWC 
(m3/ 

capita.day) 

Child 1 1 1 0.935 0.983 0.996 -0.314 
Young adult 1 1 1 -0.935 -0.983 -0.996 0.314 
Senior adult 1 1 1 0.935 0.983 0.996 -0.314 

Payment 
(CAD/household) 

0.935 -0.935 0.935 1 0.971 0.942 -0.288 

Water price (CAD) 0.983 -0.983 0.983 0.971 1 0.984 -0.295 
Income 

(CAD/household) 
0.996 -0.996 0.996 0.942 0.984 1 -0.292 

BWC 

(m3/capitaday) 
-0.314 0.314 -0.314 -0.288 -0.295 -0.292 1 

 

Table 2: Correlation coefficient for SWC and key influencing variables 

Attributes Tmax  
(°C) 

Tmin  
(°C) 

Tmean  
(°C) 

Total precipitation  
(mm) 

SWC  

(m3/capitaday) 

Tmax (°C) 1 0.758 0.940 -0.081 0.615 
Tmin (°C) 0.758 1 0.928 0.124 0.0497 

Tmean (°C) 0.940 0.928 1 0.021 0.591 
Total precipitation (mm) -0.081 0.124 0.021 1 -0.130 

SWC (m3/capitaday) 0.615 0.497 0.591 -0.130 1 

 

As expected, the correlations among different groups of people’s age are strong as well as the correlations 

among water price, household income and payment (Table 1). The important information in Table 1 is the 

direction of the correlation. Among the BWC key influencing variables, the child and senior adult groups of 

population age have a negative correlation with BWC, whereas the young adult group has a positive 

correlation with BWC. This means that raising young population leads to an increase in BWC. Besides, 

BWC has a negative correlation with water price, household payment and household income. 

Table 2 demonstrates that SWC has a moderate, positive correlation with daily maximum temperature, 

daily mean temperature, and daily minimum temperature. In addition, SWC has almost no correlation with 

total precipitation. This is due to considerable variations in the total precipitation and the presence of nearly 

zero values of precipitation. 

The results from the clustering analysis as well as correlation analysis validate the hypothesis that the 

seasonal variations in air temperature during the year have a strong influence on UWC. Therefore, we 

develop a Bayesian network based on SWC. The network could be use for predicting UWC probability 

distribution in response to climate change. Even though total precipitation appears to have almost no 

correlation with UWC, we include it in the development of Bayesian network. 
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Figure 4: Bayesian network demonstrating SWC and key influencing variables 

 

a) b) c) 

   
   

d) e)  

 
 

 

Figure 5: Probability distributions of variables: a) SWC; b) Tmax; c) Tmean; d) Tmin; e) Total precipitation 

 

Figure 4 shows SWC and the key influencing variables. Arrows demonstrate the effect of key influencing 

variables on SWC as well as the influence of Tmax and Tmin on Tmean. Those variables, which have missing 

data, are labeled with a question mark. In order to validate the accuracy of the developed model, we split 

the dataset into 20% as test data and 80% as training data. The results show that the p-value is 2.47%, 

which proofs the high confidence of the developed Bayesian network. The network in validation mode 

reveals the probability distribution of all variables and provides the chance to manipulate the probabilities 

of different states to observe the outcomes on other variables (Figure 5). In fact, if Tmax is higher than 

27.1°C, the most probable interval of SWC will change to “more than 0.448 (m3/capitaday)” by 17%. 

With the Bayesian network, we are able to not only manipulate the probabilities of intervals of child nodes 

and demonstrates the new probability distribution of parent node, but also obtain the variation of the 

probability distribution of child nodes based on the absolute interval of the parent node. We demonstrate 

these useful features by showing the new probability distributions of variables in the condition that Tmean is 

in the range of 19 – 21.7°C with 100% probability (Figure 6), and the probability distribution of Tmax, Tmin, 

Tmean and total precipitation in the case that the probability of occurrences of SWC > 0.448 (m3/capitaday) 

is 100% (Figure 7). 
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a) b) c) 

   
   

d) e)  

 
 

 

Figure 6: New probability distributions of variables when Tmean is in the range of 19 – 21.7°C; a) SWC; b) 

Tmax; c) Tmean; d) Tmin; e) Total precipitation 

 

Figure 6 shows that when Tmean is in the range of 19 – 21.7°C, the relationships between Tmin, Tmax and 

Tmean give the most probable interval of Tmin and Tmax, being 13.8 – 17.1°C and 24.1 – 27.1°C, respectively. 

In addition, the probability distribution for a target variable will change to the condition where SWC is most 

probable to be 0.410 – 0.448 (m3/capitaday). 

a) b) 

  
  

c) d) 

  

Figure 7: Conditional probability of key influencing variables when SWC > 0.448 (m3/capitaday); a) Tmax; 

b) Tmean; c) Tmin; d) Total precipitation 

 

Figure 7 shows that the occurrence probability of SWC > 0.448 (m3/capitaday) is 19.98%. Consider the 

situation that this probability is 100%. The associated probability distribution of key influencing variables 

will change. For instance, the associated probability of Tmean occurring between 19 – 21.7°C and above 

21.7°C changes from 31.71% to 38.60% and from 14.34% to 36.74%, respectively. 
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4 CONCLUSION 

This paper describes the development of a procedure to improve our understanding of UWC based on data 
mining. Daily data of UWC decomposes into BWC and SWC. Clustering analysis of the data leads to the 
detection of a significant number of outlier values in the data. The detection makes use of the maximum 
likelihood method. We conclude that the young adult group has a positive, moderate correlation with UWC. 
BWC has a negative correlation with water price, household payment and household income. SWC has a 
moderate, positive correlation with daily maximum temperature, mean temperature, and minimum 
temperature, but has almost no correlation with total precipitation. We develop a Bayesian network for the 
analysis of SWC to in order to reveal the dependency of water on climatic variable. Under the condition that 

the mean temperature ranges from 19 to 21.7°C. SWC is most probable to be 0.410 to 0.448 m3/capitaday. 

The occurrence probability of SWC > 0.448 m3/capitaday being 100% is associated with the probability of 

occurrence Tmean between 19–21.7°C rising to 38.60% from 31.71% and Tmean above 21.7C raising to 
36.74% from 14.34%. The methods discussed in this paper are useful for sustainable water consumption 
management. 
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