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ABSTRACT  

Various formulas have been proposed for estimating the probabilities of occurrence or return periods of 
the various elements comprised in a sample of historic hydrological data. Most of these formulas are 
based on the equation P = (m-α)/(N+1-2α), in which m is the rank of the element; N is the number of 
elements in the ranked sample; and α is a parameter whose value has been a subject of dispute among 
hydrologists for several decades. Proposed values of α vary between 0 and 0.5 and, presumably, depend 
on the probability distribution considered. A visual representation of the return period of the most extreme 
value in a ranked series is proposed, which shows that the most appropriate value of the parameter α is α 
= 0.31 and that it’s independent of the probability distribution. 

RÉSUMÉ 

Différentes formules ont été proposées pour estimer les probabilités empiriques ou périodes de 
récurrence pour des échantillons de variables hydrologiques.  La plupart de ces formules prennent la 
forme P = (m-α)/(N+1-2α), dans laquelle m est le rang d’une observation donnée, N est le nombre 
d’éléments dans l’échantillon et α est un paramètre dont la valeur a suscité beaucoup de discussions au 
cours des années. Les valeurs proposées de α varient entre 0 et 0.5 et dépendent présumément de la 
distribution statistique considérée. Une représentation visuelle de la période de récurrence de 
l’événement le plus grand dans un échantillon ordonné est présentée, laquelle montre que la valeur la 
plus appropriée du paramètre α est α = 0.31 et que cette valeur est indépendante de la distribution 
considérée.  
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1. INTRODUCTION 

Frequency analysis is commonly used to estimate return periods of meteorological or hydrological 
variables such as precipitation or river discharge.  Nowadays, the analysis is carried out using specialized 
software such as HYFRAN-PLUS (Bobée and El Adlouni 2015), PeakFQ (Veilleux et al. 2014) or HEC-
SSP (USACE 2016).  The software often proposes several statistical distributions which can be tested 
and the user has to select the distribution that offers the best fit to the actual data.  The selection is made 
by comparing the various distributions using a special probability paper.  Results of an analysis using the 
normal probability distribution will plot as a straight line on a normal probability paper.  A straight line will 
also be obtained with the lognormal distribution when the variables are logarithmically transformed.  
Similarly, the results of the application of the Gumbel distribution will also plot as a straight line on a 
Gumbel probability paper.  All other distributions will plot as curved lines, whether concave upward or 
concave downward.   
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Two-parameter distributions like those mentioned above most of the time do not fit well hydrological data 
and this explains why three-parameter distributions (generalized extreme value (GEV), log-Pearson III, 
etc.) were introduced.  When plotted on normal or Gumbel probability paper these distributions most of 
the time show curved lines. 

2. PLOTTING DATA ON A FREQUENCY PLOT 

Let a sample of N values of a variable X be ranked in order of magnitude from the largest to the smallest: 

 

x1 ≥ . . . ≥ xm ≥. . . ≥ xN 

 

If ym = F(xm) is the cumulative distribution function of X then the probability of exceedence of variable xm will be 

decreasing: 

 

y1 ≥ . . . ≥ ym ≥. . . ≥ yN 

 

Fitting data to a frequency plot requires that a probability be assigned to each element of the sample. Gumbel (1958) 

has proposed the following conditions which should be satisfied for any plotting formula: 

 

1. The plotting positions must be such that all members can be plotted; 

2. The return period (plotting position) of a value equal to or larger than the largest observation should converge 

towards N, the number of observations; 

3. The observations should be equally spaced on the frequency scale; 

4. The plotting position formula ought to be simple and have an intuitive meaning; and 

5. The plotting positions of observation i should lie between the observed frequencies (m-1)/N and m/N and 

should be universally applicable, i.e. it should be distribution-free.  

 

Gumbel has not offered any proofs as to the necessity of the conditions. Cunnane (1978) has discussed them and 

expressed disagreements about conditions (2), (3) and (4). For example, he states that condition (2) is not in keeping 

with statistical fact and is misleading. He also questioned the necessity and desirability of conditions (3) and (4) but 

did not reject them.  

 

A general plotting formula for ranked observations is the following: 

 

[1] 
βN

αm
P




  

in which P is the probability of occurrence of observation m;  m is the rank of the observation; N is the number of 

observations in the sample; and α and β are parameters to be determined. In order to estimate the value of parameter 

β one assumes that the probabilities will be symmetrically distributed around probability 0.5. If the observations are 

ranked from the largest (m = 1) to the smallest (m = N), this means that the probability of exceedence of observation 

m will be equal to the probability of non-exceedence of observation N - (m - 1), or 

 

[2] 
βN

α1)(mN
1

βN

αm









    

 

Resolution of the equation yields β = 1 - 2α and the plotting formula becomes: 

 

[3] 
2α1N

αm
P




  

 

Different values of parameter α have been proposed and Table 1 presents some of the commonly used formulae.  
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Hazen’s formula, Eq. 4, is more than a century old and is not based on a theoretical development but was rather 

proposed to circumvent the ambiguity posed by the then familiar equations m/n and (m-1)/N. Hazen avoided this 

problem by using α = 0.5.  

 

The Weibull formula, Eq. 5, has long been used because it was said to be unbiased for any statistical distribution but 

Cunnane (1978) showed that it gives a biased overestimation at the upper end of a skewed distribution. In fact, the 

Weibull formula is unbiased only for the uniform distribution.  

 

Blom (1958) showed that for the normal distribution, an optimal unbiased estimate of the standard deviation σ may 

be obtained by using α = 0.375 (Eq. 6). The same formula would also apply to the two-parameter lognormal 

distribution when the variables are logarithmically transformed. Using a similar method, Gringorten (1953) 

proposed to use α = 0.44 (Eq. 8) for the exponential (or extreme value) distribution. Cunnane (1978) suggested using 

α = 0.40 (Eq. 10) as a compromise if the formula is to be used with all distributions. 

 

Tukey (1962) thought that the differences between the various equations is probably not important and proposed Eq. 

7 because it is simple and represents an adequate approximation to what is claimed to be an optimum.  

 

A computation method equivalent to Eq. 9 was initially proposed by Beard (1943), based on the idea that a natural 

estimate of the unknown variable ym = F(xm) is the median of its distribution, the value with equal probabilities of 

being exceeded or not being exceeded.  Later on, Chegodaev (1953) and Benard and Bos-Levenbach (1953) both 

used a variant of Eq. 9 where α has been rounded up to 0.30 instead of 0.31.  Eq. 9 has been adopted by Jenkinson 

(1977) based on the same principle.   

Table 1. Plotting position formulae 

Equation Plotting position Formula Value of α 

[4] Hazen (1914) 
N

5.0m
P


  0.5 

[5] Weibull (1939) 
1N

m
P


  0 

[6] Blom (1958) 
25.0N

375.0m
P




  0.375 

[7] Tukey (1962) 
0.33N

33.0m
P




  0.33 

[8] Gringorten (1963) 
12.0N

44.0m
P




  0.44 

[9] Jenkinson (1977) 
38.0N

31.0m
P




  0.31 

[10] Cunnane (1978) 
2.0N

4.0m
P




  0.4 

 

More recently, In-Na and Nguyen (1989) have modified the general plotting formula to include the coefficient of 

skewness while investigating three-parameter distributions. For the generalized extreme value (GEV) distribution 

they established the following approximately unbiased plotting formula: 

 

[11]  
0.380.08N

27.013.0m
P




  

 

in which τ is the coefficient of skewness. 



HYD725-4 

 

At the same time, Nguyen et al. (1989) developed a similar unbiased formula for the Pearson III distribution: 

 

[12]  
0.050.3N

42.0m
P




  

 

Eq. 12 would also apply to the logPearson III distribution when the variables are logarithmically transformed. 

3. VISUAL INTERPRETATION OF THE PLOTTING FORMULAE 

Only the plotting formulae conforming to the general formula expressed by Eq. 3 are considered in the following 

sections.   

 

The different plotting formulae can be visualized as follows:  

 

Let us assume a hydrological event, say peak instantaneous flow, which has a return period equal to Tr. Then the 

probability that this event will be exceeded on any year is 1/Tr and the probability it will not be exceeded is 1 - 1/Tr. 

Now if we have a sample of N annual observations of that event, the probability that all these events will have a 

return period less than Tr will be (1 - 1/Tr)N. Therefore, the probability that at least one observation in that sample 

will have a return period exceeding Tr will be:  

 

[13] 
N

r )T1(11P   

 

The latter expression has been computed for different values of the return period, Tr, and of the sample size, N. The 

results are shown in Table 2 and illustrated on Figure 1. 

Table 2. Probability that a flood of return period Tr years will be exceeded at least once over a period of N years 

Return period 

(years) 

Sample size, N 

10 20 50 100 1000 10000 

2 0.999 1.000 1.000 1.000 1.000 1.000 

5 0.893 0.988 1.000 1.000 1.000 1.000 

10 0.651 0.878 0.995 1.000 1.000 1.000 

20 0.401 0.642 0.923 0.994 1.000 1.000 

50 0.183 0.332 0.636 0.867 1.000 1.000 

100 0.096 0.182 0.395 0.634 1.000 1.000 

200 0.049 0.095 0.222 0.394 0.993 1.000 

500 0.020 0.039 0.095 0.181 0.865 1.000 

1000 0.010 0.020 0.049 0.095 0.632 1.000 

2000 0.005 0.010 0.025 0.049 0.394 0.993 

5000 0.002 0.004 0.010 0.020 0.181 0.865 

10000 0.001 0.002 0.005 0.010 0.095 0.632 
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3.1 Relationship between the return period of the largest element and the sample size  

The relationship between the return period of the largest event (m = 1) in a sample of N elements for the different 

plotting formulae is obtained as follows: 

 

[14] 
rT

1

2α1N

α1





 

 

which can be rearranged as: 

 

[15] 
α1

N2αN11

N

Tr




  

 

For large samples, Equation 15 yields 

 

[16] 
α1

1

N

Tr


   

 

 

 
 

Figure 1.  Probability that the Tr return period event will be exceeded at least once over a period of N years 

 

 

The ratios Tr/N for the largest element in the sample as a function of the plotting formulae are shown in Table 3. 

Table 3.  Ratios Tr/N and probabilities of exceedence of the largest element in large samples 

Formula Tr/N 
Probability of exceedence of 

largest element 

Weibull 1.00 0.632 

Jenkinson 1.44 0.500 
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Tukey 1.50 0.487 

Blom 1.60 0.465 

Cunnane 1.67 0.451 

Gringorten 1.79 0.428 

Hazen 2.00 0.393 

 

3.2 Probability of exceedence of the largest element in a sample 

The probability of exceedence of the largest element in the sample is given by Eq. 13.  When combined with Eq. 15 

this probability can be estimated for different sample sizes and the results for the various plotting formulae are 

illustrated in Figure 2. 

 

 
 

Figure 2.  Probability of exceedence of the largest element for the various plotting formulae 

 

Figure 2 shows clearly that the probability of exceedence of the largest event using Weibull’s formula is over 60% 

which means that this formula tends to overestimate the magnitude of the event for a given return period. On the 

contrary, all other formulae, but Jenkinson’s, tend to more or less underestimate the event. Hazen’s formula is the 

most extreme in that regard.  Only Jenkinson’s formula appears neutral.  

 

Even though Blom’s or Gringorten’s formula have been declared optimal for the normal or extreme value 

distributions, respectively, a hydrologist never knows which distribution will provide the best fit for the data and, 

therefore, there is no statistical reason to adopt these formulae a priori. Jenkinson’s formula, by definition, can be 

applied whatever the statistical distribution of the sample.  

 

It is possible that a formula other than Jenkinson’s may provide a better fit for a given sample but, when used with a 

large number of samples, Jenkinson’s formula is the one that will provide, most of the time, values for a given return 

period which are neither overestimated nor underestimated.   
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Combining Equation 16 with Equation 13 for large samples is equivalent to 

 

[17] 1αT
N

e1e1P r 


  

 

Probabilities of exceedence of the largest element in the sample and for the various plotting formulae are given in 

Table 3. 

 

Figure 3 shows a comparison of Jenkinson’s formula with other ranking formulae for a sample of size N = 50 using 

return periods for 46 ≤ m ≤ 50.  It is clear that a significant difference for return periods is only apparent for the two 

or three highest ranks. Weibull’s formula gives clearly a lower return period for the largest event. All other formulae 

give relatively similar results except Hazen’s which gives the highest estimate. 

 

 

 
 

Figure 3.  Comparison of Jenkinson’s formula with other ranking formulae 

 

4. THE JENKINSON FORMULA 

The Jenkinson formula is different from the other plotting formulae because it is the only one that is defined based 

on a specific probability which corresponds to the median.  In other words, the probability of an element obtained 

with the Jenkinson has 50% chance of being exceeded and 50% of not being exceeded.  It is, therefore, independent 

of the statistical distribution. 

 

Combining Eq. 13 and Eq. 14 and setting P = 0.5, one gets 

 

[18] 
22

112N

α
N

1

N
1










 

  

 

Table 4 shows the value of α for different sample sizes. 

Table 4.  Values of α for different sample sizes 
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It can be seen that for small samples (N < 20) α is about equal to 0.30, the value proposed by Chegodaev (1953) and 

Benard and Bos-Levenbach (1953). For N ≥ 20 the value of α is closer to 0.31.   

 

Using Equation 17 with P = 0.5 it can be shown that for large N, Tr/N = 1 / ln 2. Similarly, Eq. 17 can be used to get 

an estimate of parameter α for large sample sizes: α = 1 – ln 2, a result already obtained by Folland and Anderson 

(2002). 

5. CONCLUSION 

Jenkinson’s formula is the only one having a statistical meaning and being applicable with any statistical 

distribution. All other formulae generally either overestimate or underestimate the magnitude of the largest element 

in a sample. It is still possible that a formula other than Jenkinson’s may provide a better fit for a given sample but 

when performing frequency analyses for a large number of samples the Jenkinson formula is likely to provide, most 

of the time, values for a given return period which are neither overestimated nor underestimated.  
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