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Abstract 

Current guidelines for roundabout circulatory roadway width (CRW) are based on a static method that does 
not consider circulatory speed. In addition, the roundabout entry width is based on practical experience. 
This paper presents a method for determining the circulatory and entry widths based on a two-dimensional 
dynamic model that involves a system of differential equations. The method considers the interactions 
between the vehicle and the road geometric elements, including tire sideslip, vehicle weight, vehicle speed, 
and vehicle stability. The concept is illustrated using the intermediate semitrailer (WB-12) design vehicle. 
Design guidelines for the required circulatory width are established for different circulatory speeds (0-60 
km/h) and different inscribed circle diameters (30-80 m). To simplify the guidelines, for each inscribed circle 
diameter, regression models were developed for the CRW as a power function of the circulatory roadway 
speed. The results show that the proposed method provides values of the CRW that are less than those of 
the current static method by 0.7-1.0. The proposed guidelines would be useful in case of space restrictions. 
 
Keywords: roundabout, circulatory roadway width, vehicle dynamics, inscribed circle diameter. 
 

1. INTRODUCTION 
 
Geometric parameters of roundabouts are governed by the maneuvering requirements of the largest 
vehicles expected to travel through the roundabout. At single-lane roundabouts, the circulatory roadway 
width (CRW) should accommodate the design vehicle. Appropriate vehicle-turning templates or a CAD-
based computer programs are normally used to determine the swept path of the design vehicle throughout 
the turning movements. Usually the left-turn movement is the critical path for determining the circulatory 
roadway width. According to AASHTO (2011), a minimum clearance of 0.6 m should be provided between 
the outside edge of the vehicle’s tire track and the curb line. Gingrich and Waddell (2008) presented the 
required circulatory width for various inscribed circle diameters for different design vehicles. In some cases, 
particularly where the inscribed circle diameter is small or the design vehicle is large, the turning 
requirements of the design vehicle may dictate that the circulatory roadway be so wide that the amount of 
deflection necessary to slow passenger vehicles is compromised. In such cases, the CRW can be reduced 
and a truck apron, provided outside the mountable curb of the central island, can be used to accommodate 
larger vehicles.  
 
The best known approach to swept path formulation is that of the Society of Automotive Engineers (SAE) 
(Kizas, 1997). Using this approach, the parameters of the circular movements for single and multiple unit 
vehicles have been established. This approach is static in nature and is mainly based on geometric relations 
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as the vehicle travels along the curve without considering the effect of vehicle speed. Thus, currently the 
circulatory width is determined using vehicle geometric interpretation either by the trigonometric functions 
of SAE method or using CAD procedures. The effect of vehicle dynamics behavior on the swept path at 
roundabouts has not been considered in previous research. 
 
The purpose of this paper to present a dynamics-based model for determining roundabout CRW that 
considers vehicle speed at the steady-steady motion and illustrate its application for WB-12 design truck. 
The next sections present the experimental design and the vehicle dynamics model. The following sections 
present model validation and design guidelines for CRW for WB-12 design vehicle, followed by the 
conclusions. 
 

2. VEHICLE DYNAMICS-BASED MODEL 
 
The circulating roadway width is determined using vehicle swept path. To understand the phenomenon of 
swept path, it is essential to appreciate the significance of the various parameters affecting the turning 
behavior of a vehicle. The amount of swept path varies directly with the wheelbase length of a unit and 
inversely with the radius of the turn through which the vehicle travels. The magnitude of swept path is also 
affected by the number and location of the vehicle articulation points, the length of the arc negotiated during 
the turn, and vehicle speed. 
 
In the dynamics-based model, the following assumptions are made: (a) a vehicle is assumed as plane, (b) 
the redistribution of longitudinal and transversal vertical reactions on vehicle wheels is neglected, and (c) 
the modeling of the contact forces between the tire and the road is based on the simplified Pasejka's magic 
formula for pure tire slip (Pacejka, 2002). 
 
2.1 Model Description 
 
Consider briefly the integration of motion equations, where an articulated vehicle is represented by a two-
dimensional (2D) dynamic model (Figure 1). This dynamic model is different from the traditional system 
equations used in the state-space of the bicycle model for multiple unit vehicles (Ellis, 1969). The basic 
idea of the dynamic model is to account for the total number of tire contact points with the road surface and 
to use the matrix technique to represent model components. The model uses a minimum amount of 
necessary information that is optimally suited for fast computations in software packages such as MATLAB. 
 
According to the principle of theoretical mechanics, consider a two-unit vehicle moving in a global 
coordinate system XOY. The vehicle is represented by massless rods pivotally jointed at point P. The 
distributed masses mTR, mST and inertias ITR, IST are concentrated at the physical centers of the units. The 
master unit is a tractor TR whose mass center is C, connected by a semitrailer ST whose mass center is 
C' (Figure 1). The masses are located at distances eTR, eST relatively to the joint point P. In the process of 
angular motion the longitudinal axes of the tractor and semitrailer form an articulation angle, ψ. 
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Figure 1 Schematic representation of articulated vehicle dynamics model 

The vehicle’s position at any time is sufficiently characterized by the combination of radii vectors (RC and 
RC') from the origin of global coordinates to the unit mass centers. However, it is more convenient to use 
the generalized coordinates by introducing the mobile sub-global coordinate systems at the mass centers. 
The axes of the sub-global systems are parallel to the global system axes. The local coordinate systems 
xCy and x'C'y' (blue points in Figure 2) are introduced in the sub-global coordinate systems and can rotate 
around the centers C and C', respectively. The equations of dynamics are composed relative to the sub-
global coordinate systems. In addition, at any point M or M' additional sub-local coordinate systems could 
be input. For example, in the case of tires’ points the systems are called wheels' coordinate systems 
(Pacejka, 2002), where the vectors of acting loads and forces are determined. Thus, the various degrees 
of freedom of the dynamics-based model are combined to form the vector (column matrix) R, as follows 
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where 
 
XTR   = movement of tractor's mass center along the global axis OX; 
YTR   = movement of tractor's mass center along the global axis OY; 
ϕTR   = tractor's rotational angle relatively to the vertical axis passing through the tractor's mass center; 
ϕST   = semitrailer's rotational angle relatively to the vertical axis passing through its mass center; 
VG   = velocity vector in the global coordinate system according to the degrees of freedom; 
V   = vector of the main unknowns in the tractor's local mobile coordinates;  
J    = vector that characterizes the relative acceleration in the tractor's local coordinate system;  
W  = diagonal matrix of angular velocities ωTR, ωST;  
F  = vector of the generalized forces acting in the directions coinciding with the generalized coordinate 

system and reduced to the local coordinate system. 
 
To obtain the motion equations, the fundamental theorems of theoretical mechanics regarding the changes 

of momentum and angular momentum are used. The impulse of the two-mass model Q  is defined as 

 

[2] TR ST TR TR ST STQ Q Q m V m V                                                        

 

where  
 

TRQ , STQ  = momentum vectors for the tractor and semitrailer, respectively 

TRV , 
STV   = absolute velocity vectors for the tractor and semitrailer mass centers, respectively. 

 
The change of the mechanical system's momentum is caused by the action of the resultant of external 
forces, as follows 
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k

e
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STF  = vectors of external forces acting at any point k of the tractor and semitrailer, respectively.  

The first couple of scalar equations are obtained as the projections of the vector of Eq. (3) on the axes of 
the tractor's local coordinate system. To account for the rotational motion, consider the angular momentum 
change for each truck point Mk relative to the joint point P. Then, 
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where mTRk, mSTk = masses of point Мk of the tractor and semitrailer, respectively. 
 

The internal forces at point P from the tractor and semitrailer, 
PF , 

PF  , respectively, produce no moments, 

unlike the external forces. Then, the generalized moments which acts on the tractor and semitrailer are, 
respectively, given by 
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Thus, the scalar equations of the second couple of rotational dynamics have been formed. Through 
simplification and transformation, the system of the second-order differential equations in vector-matrix 
format can be written as 

 

[6]     -1
J = M F + L + T W V                                                

 

Introducing auxiliary matrices for a more compact representation of Eq. (6), then 
 

[7] 
0 0

0 0

 
  
 

2Z , 
1 0

0 0

 
  
 

2UE , 
0 0

0 1

 
  
 

2LE , 
0 1

0 0

 
  
 

D                        

 

[8] 
   T

TR ST ST TR

TR TR

m m m e

m e

      
  
    

2U

2U 2

D D E
L

E Z
;                                  

 

[9]    ST ST T T

TR

m e Cos Sin
e

 
     

         
     

2 2 2L

2 2L

Z D Z E
T

D Z E D
.                 

 

It is more convenient to describe the matrix of inertia coefficients M as a sum of the constant part МI and 
the variable trigonometric part МT, 
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The transitions from the wheel, sub-local and local coordinate systems to the global coordinate system 
(which have a rotation angle ξ ) are achieved through the following transition matrix, 
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To transfer the velocities of the tractor's local coordinate system to the global coordinate system, the 
following matrix is formed, 
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Finally, using Eqs (1)-(14), the displacements are obtained using double integration, as follows 
 

[15] dt V J ;  TR GV N V ; dt  G
R V                                   

The integration of acceleration and velocity of Eqs. (14) and (15) is carried out numerically in MATLAB 
using the solution method for stiff equation systems. Note that the power balance elements and simulation 
of tire-road contact are not demonstrated here due to sufficient prevalence of information.  
 
The conversion of the generalized vehicle dynamics-based model from mathematics to animation is 
organized in several stages. First, according to vehicle geometric data an animation model is created that 
visually reflects a final solution of the dynamics equations and contributes to verifying the calculations. 
Second, the steering drive (a steering trapezoid in particular) are calculated and rationalized to provide 
accurate ratio of the steered wheels' turning angles (Ackerman's angles). Third, the masses and axial loads 
are distributed based on the weighting parameters. Finally, multiple calculations with any desired initial 
conditions are performed. Note that the dynamic model for a single-unit vehicle is a special case of the 
presented dynamic model of Eqs. (1)-(15), where one degree of freedom (slave unit) is removed. 
 
2.2 Model Validation 
 
The presented vehicle dynamics-based model, which considers the effect of circulatory speed, was first 
validated for WB-12 before establishing the design guidelines for the speed-based circulatory roadway 
width. The dimensions of the WB-12 design vehicles are shown in Figure 2. The validation is accomplished 
using three types of comparisons. First, the articulation angle of the dynamics-based model is compared 
with that of AASHTO. According to AASHTO (2011), during the U-turn execution with maximum steering 
rotation angle, the maximum articulation angle reaches a certain value. For WB-12, the articulation angle 
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reaches 46° at a maximum steering angle of 20.3°. The dynamics-based simulation of this maneuver with 
the specified conditions provided an articulation angle of 46.7°, indicating a relative error of 1.5%.  

 

 
 

Figure 2 Design vehicles used in the study (AASHTO, 2011) 
 
Second, the CRW of the dynamics-based model corresponding to the special case of a speed of practically 
zero (quasi-static model) is compared with that of the SAE geometric model, as shown in Table 1. The 
CRW was calculated for inscribed circle diameter of 30 m to 80 m. As noted, the maximum difference 
between the CRW of the quasi-static and geometric models is -0.1 m. Third, the CRW of the quasi-static 
model was compared with that of the AASHTO published values (Chan and Livingston, 2014).The ICD 
diameters were 33.1 m, 35.6 m, 40.8 m, and 50.0 m and the diameter values used for comparison were 35 
m, 40 m, 45 m, and 50 m. The interpolated CRW values were 5.9 m, 5.7 m, 5.5 m, and 5.1 m. Comparing 
these values with those of the quasi-static case, the relative errors of the simulated CRW were -2.5%, -
1.1%, 0.8%, and 3.0%, respectively.  
 
In the preceding comparisons, a gross vehicle weight was assumed for the quasi-static case. To evaluate 
the effect of the vehicle weight on CRW, the CRW for an unloaded truck was calculated for different ICD 
values. The results showed that the resulting CRW were almost identical to those for loaded truck and the 
relative error was very small.  Based on these results, the CRW will be established using the dynamics-
based model with gross vehicle weight. The preceding results show that the special case of the proposed 
vehicle dynamics model (where the speed is practically zero) produces CRW values that are almost 
identical to those of the current static-based method. This close agreement provides evidence of the validity 
of the proposed method. 
 

3. GUIDELINES FOR CIRCULATORY ROADWAY WIDTH 
 
Consider the formation of the CRW on a single-lane roundabout for the three design vehicles (Figure 3). 
The figure shows the simulated steady-state movement at speed close to zero (quasi-static mode) and the 
movement on subcritical speed that precedes vehicle stability loss. For the quasi-static mode note that the 
planes of steered wheels are simultaneously perpendicular to the rays emanating from a turning center 
(Pacejka, 2002; Ellis, 1969).  
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Figure 3 Formation of circulatory roadway width at single-lane roundabout for different 
design vehicles at quasi-static and steady-state dynamic modes (a = quasi-static 
movement mode, b = steady-state movement mode on pre-critical speed, c = 
remaining circulatory roadway width, d = maximum width difference, e = clearance 
from wheels (0.61 m), f = inscribed circle diameter (ICD), g = width between curbs 
(face to face), g' = width required for bus, h = low profile mountable curb at apron, i = 
inscribed circle, and j = central island). 

 
The maximum difference in the CRW of the dynamics-based model substantially differ from those of the 
SAE geometric model depends on the circulatory roadway ICD and speed. The results show that the 
difference for for WB-12 lies in the range of 0.7 m (10.1%) to 1.0 m (19.2%) (Table 1). These results show 
that the CRW of the proposed dynamics-based model substantially differs from that of the SAE geometric 
model. To aid practical use the dynamics-based model, guidelines for CRW for WB-12 were established in 
the form of regression models and design charts. Regression models of CRW were established for each 
inscribed circle diameter as shown in Table 2. An example of the relation is shown in Figure 4.  
 

Table 1 Comparison of geometric, quasi-static, and dynamics-based circulatory roadway widths a 

Parameter 
Inscribed circle diameter, ICD (m) 

30 35 40 45 50 55 60 65 70 75 80 

Calculated width for geometric 
model, m 

6.9 6.2 5.8 5.5 5.3 5.2 5.0 4.9 4.8 4.7 6.9 

Simulated width for  quasi-static 
model (gross weight), m 

6.9 6.3 5.9 5.6 5.4 5.2 5.1 5.0 4.9 4.8 6.9 

Difference (geometric minus 
quasi-static models), m 0 -0.1 

-
0.1 

-
0.1 

-
0.1 0 

-
0.1 

-
0.1 -0.1 -0.1 0 

Maximum difference (geometric 
minus dynamics-based 
models), m 

0.7 0.8 0.9 0.8 0.9 1.0 0.9 0.8 0.9 0.8 0.7 

a To convert from meter to feet multiply by 3.28 

 
Table 2 Estimated regression models for dynamics-based circulatory roadway width a 

Parameter 
Inscribed circle diameter, ICD (m) 

30 35 40 45 50 55 60 65 70 75 80 

Speed, km/h 1-30 1-35 1-40 1-40 1-45  1-50 1-50 1-50 1-55 1-55 1-55  
Coefficient a, 
   h·m/km, ·104 

-5.798 -3.316 -1.999 -2.325 -1.452 -0.792 -0.973 -1.137 -0.777 -0.763 -0.826 

95% CB of a,  -4.491 -2.055 -1.054 -1.387 -0.806 -0.261 -0.52 -0.696 -0.421 -0.437 -0.528 



GEN177-8 

   h·m/km, ·104 -7.106 -4.577 -2.944 -3.263 -2.098 -1.322 -1.427 -1.577 -1.133 -1.089 -1.124 
Coefficient b 2.09 2.185 2.275 2.189   2.282  2.41   2.325 2.258 2.335 2.315 2.275 

95% CB of b 
2.156 
2.024 

2.291 
2.078 

2.403 
2.147 

2.298 
2.08 

2.399 
2.165 

2.582 
2.239 

2.445 
2.206 

2.357 
2.158 

2.45 
2.22 

2.422 
2.208 

2.365 
2.185 

Coefficient c, m 6.895 6.284 5.882 5.602   5.381  5.205   5.072 4.961 4.863   4.782   4.714   

95% CB of c, m 
6.901 
6.889 

6.295 
6.274 

5.895 
5.869 

5.612 
5.592 

5.393 
5.37 

5.223 
5.187 

5.083 
5.06 

4.97 
4.952 

4.875 
4.852 

4.792 
4.772 

4.721 
4.706 

a R-square for all models is greater than 0.999. 

 

 
 

                 Figure 4 Example of regression relation between circulatory roadway width and speed  
                 for WB-12 design vehicle and ICD = 60 m 
The circulatory roadway width is established as a function of speed for different inscribed circle diameters 
and different design vehicles, as shown in Figure 5. The ICD diameter varies from 30 (from 35 in the case 
of WB-20) up to 80 m with an increment of 5 m and the speed ranges from near zero (1 km/h), that provides 
simulation on quasi-static mode, to the critical speed which is limited by the conditions of vehicle motion 
stability (in speed increment of 5 km/h).  
 

 
 

Figure 5 Design guidelines for roundabout circulatory roadway width using the dynamics-based  
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         model for WB-12 design vehicle (for steady-state movement mode) 
 

As an application example, consider a roundabout with an inscribed circle diameter of 50 m and circulatory 
roadway speed of 40 km/h. Determine the required width of the circulatory roadway based on the SAE 
geometric and proposed dynamics-based models. From Figure 5, the required CRW based on the SAE 
geometric model, which approximately corresponds to circulatory roadway speed of 1 km/h, is determined 
as 5.4 m. The CRW for the dynamics-based model, which corresponds to circulatory roadway speed of 40 
km/h, is determined 4.8 m. Therefore, the actual CRW can be set as 4.8 m with the difference of 0.6 m (5.4 
- 4.8) being used as part of a mountable area of the central island. This area will be used only in emergency 
or congested conditions, where the required CRW will be closed to 5.4 m. 
 

4. CONCLUSIONS 
 
This paper has presented a dynamics-based model for determining the circulatory roadway width of single-
lane roundabouts. The model, which takes into account the effect of the circulatory roadway speed, 
provides lesser values of CRW than the SAE geometric model. Guidelines for CRW are established in the 
form of regression models and design charts for the WB-12 design vehicle. The results of the proposed 
dynamics-based model would be useful in situations in which space is constrained. It is recommended that 
the difference in the required CRW between the SAE geometric and dynamics-based models should be 
used as a mountable area of the central island. The presented guidelines are suitable for normal operations 
of the roundabouts. In case of emergency or traffic congestion, where the design vehicle will move at a low 
speed and requires a slightly larger circulatory roadway width, the design vehicle can use the mountable 
area of the central island.  
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