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ABSTRACT: Functionally graded materials (FGMs) as a type of engineered advanced materials are 
composed of the mixture of two or multiple materials or phases in a fashion that overall multiphysical 
properties gradually changes throughout the medium. Conventional plate and shell models based on the 
classical continuum theories, however, cannot capture the size effects occurring in nano/microstructure of 
FGMs due to the lack of material length scale in the formulation of classical continuum mechanics. As a 
result, plate and shell models based on the size-dependent continuum theories, such as couple-stress 
theory, have been recently revisited. In present paper, a size-dependent modified couple-stress model is 
developed for moderately-thick doubly-curved panels based on the first-order shear deformation theory. 
The non-classical model incorporates the material length scale parameter, which incorporates the size 
effect in the mechanical behavior. In specific, we investigate the free vibration of FGM doubly-curved nano-
panels for alternative boundary conditions. The material properties of the FGM panel vary through the 
thickness direction, effective properties which are estimated through a multiscale homogenization 
technique. The governing equations are first derived by a variational formulation using Hamilton’s principle 
and are solved afterwards using the numerical Galerkin method. Numerical results are finally presented to 
study the effects of the material length scale parameter and material compositions on the vibration behavior 
of FG doubly-curved nano-panels. 

 

1 INTRODUCTIONS 

Continuum mechanics theories based on the classical elasticity are not capable of simulating accurately 
the mechanical behavior of micro- and nano-structures. The culprit is the lack of length scale parameter in 
the formulation of deformation mechanism. In order to consider the scale effects, size-dependent continuum 
theories have been introduced as alternatives to classical continuum mechanics. Mindlin and Tiersten 
(1962), and Koiter (1964) developed couple stress theory with one length scale parameter, and Eringen 
(1972) presented a non-local elasticity model including two material length scales. Since measuring 
material length scales is a cumbersome task, requiring detailed multi-scale simulation from macro to micro 
and atomistic levels, many researchers have performed size-dependent analysis involving only one 
material length scale. For instance, Yang et al. (2002) proposed a modified couple stress theory where the 
couple stress tensor is symmetric and only one internal material length scale is involved in addition to 
Lamé’s constants. The modified couple stress theory has been applied to study structural behavior of size-
dependent micro- or nano-plates and shells. For instance, Park and Gao (2006) developed size-dependent 
Euler-Bernoulli beam and Ma et al. (2008) developed a size-dependent Timoshenko beam model on the 
basis of modified couple stress theory proposed by Yang et al. (2002). Afterwards, size-dependent Euler-
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Bernoulli and Timoshenko beam models have been used to simulate structural behavior of micro-tubules 
(Kong et al. 2008), and micro-tubes conveying fluid (Wang 2010). In addition, plate and shell theories have 
been used along with the couple stress theory for analyzing microstructure-dependent materials and 
structures. For example, Tsiatas (2009) performed static analysis of micro-plates by introducing a 
microstructure-dependent model based on the classical plate theory. Later on, Hadjesfandiari and Dargush 
(2011) developed fundamental solutions for two- and three-dimensional linear isotropic size-dependent 
couple stress elasticity. Modified couple stress theory has been further developed to analyze advanced 
graded materials like FG micro-beams (Asghari et al. 2011) and FG micro-plates (Reddy et al. 2012). 

In this paper, we establish a mathematical framework based on the modified couple stress theory and FSDT 
to study free and forced vibration analyses of size-dependent FG doubly-curved panels. While most of the 
papers in the literature on the structural response of FGMs have employed the approximate rule of mixture 
(micromechanical models) to obtain effective material properties (Akbarzadeh et al. 2014), herein we also 
implement a standard mechanics homogenization technique to accurately predict effective multi-physics 
properties of FGMs for a wide range of volume fractions of matrix for two simplified shapes of inclusion. 
Numerical results confirm the significance of implementing an accurate numerical homogenization 
technique for predicting overall properties of FGMs. 

 
2 DISPLACEMENT FIELD IN SIZE-DEPENDENT FG DOUBLY-CURVED PANELS 

A schematic representation of a size-dependent doubly-curved panel made of FGMs with constant principal 
curvatures is shown in Fig. 1. The curvilinear length, curvilinear width, and thickness of a size-dependent FG doubly-
curved panel are represented by a, b, and h, respectively. The FG panels are presented in an orthogonal curvilinear 
coordinate system (x, y, z). The radii of principal curvatures of the middle surface are Rx and Ry overlapped along 
the coordinate axes. Consistent with the assumptions of a moderately-thick shell theory, the displacement field 
follows (Tornabene et al. 2013): 
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where u0, v0, and w0 are the displacement components of points lying on the middle surface (z=0) of the doubly-
curved panel, along meridian, circumferential and normal directions, respectively. Time variable is represented by 
t, while normal-to-mid-surface rotations are represented by φx, and φy. The general strain-displacement relations 
for a 3D solid shell in the coordinate system (x, y, z) are (Kiani et al. 2012): 
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where εij and γij are normal and shear strain components, respectively. Besides, 𝑐0 =
1

2
(
1

𝑅𝑥
−

1

𝑅𝑦
) is Sanders shell 

theory characteristic adopted here to account for zero-strain condition for rigid body motion. 
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Figure 1: Coordinate system for a size-dependent FG doubly-curved panel. 

 
As seen in Fig. 1, the doubly-curved formulations provided in this paper can reduce to a wide range of panels with 
constant curvatures, e.g. circular cylindrical shell for Ry = ∞, spherical panel for Rx = Ry, and saddle panel for Rx = 
-Ry (see Fig. 1). 
 

3 EQUATIONS OF MOTION OF SIZE-DEPENDENT FG DOUBLY-CURVED PANELS 

Equations of motion for an FG doubly-curved panel are obtained using the principle of virtual displacements: 

   
2

1

3 0

t

t

U V K dt      

where δU, δV, and δK are the virtual strain energy, virtual work done by external forces, and virtual kinetic energy, 
respectively. Based on modified couple stress theory, the equations of motion are developed. According to the 
modified couple stress theory, the virtual strain energy δU can be written as: 

   4 ij ij ij ij

V

U m dV      

where Einstein summation convention is adopted. Here, σij, εij, mij, and χij are the components of the Cauchy stress 
tensor, strain tensor, the deviatoric part of the couple stress tensor, and curvature tensor, respectively; it should be 
noted that mij, and χij are symmetric. The total virtual kinetic energy δK can be expressed as (Kiani et al. 2012): 
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where ρ represents the panel density. The three-dimensional stress-strain relations for heterogeneous isotropic 
linear elastic materials used in this paper are written as follows (Reddy 2004): 
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where E, G, υ, and l are Young’s modulus, shear modulus, Poisson’s ratio, and material length scale, respectively. 
In this research, we consider size-dependent two-phase FG doubly-curved panels. The FGMs are modeled here 
as a two-phase (inclusion and matrix) composite materials in which the composition of phases varies continuously 
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in the form of power-law (P-FGM) through the thickness of the doubly-curved nano-panel. The volume fraction of 
matrix varies as: 

   
2

7
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h z
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where Vft , and Vfb are the volume fraction of matrix at the top (z = h/2) and the bottom (z = -h/2) of FG panels, 
respectively; p and h stand for the power-law index and the thickness of the doubly-curved panel. The effective 
mechanical properties of FG doubly-curved panels will be obtained by a standard mechanics homogenization 
technique in Section 5 for each volume fraction of FGMs for two different shapes of inclusion. By substituting Eqs. 
(6) into Eq. (3) and, carrying out the necessary integrations, and employing the fundamental lemma of calculus of 
variations, we can develop the system of equations of motion for vibration analysis of size-dependent FG doubly-
curved panels: 
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where the classical and non-classical forces and moments are written as follows: 
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where ks is the shear correction factor which needs a detailed elasticity analysis to be determined. We have 
assumed 𝑘𝑠 = 5/6. The mass moment of inertia Ii in Eq, (8) are calculated by: 
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4 SPATIAL SOLUTION 

The numerical Galerkin method is adopted here for solving the governing differential equations. Mathematical 
expressions for boundary conditions considered in this paper are presented here (Reddy 2004, Sarvestani et al. 
2011, 2016): 

(a) Simply-supported edges at x = 0, a; and y = 0, b (SSSS): 
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 (b) Clamped edges at x = 0, a; and simply-supported edges at y = 0, b (CSCS): 
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(c) Clamped edges at x = 0 , a; and y = 0, b (CCCC): 
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(d) Free edges at x = 0, a; and simply-supported edges at y = 0, b (FSFS): 
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To implement the Galerkin method, the displacement field can be expressed in the following form for arbitrary 
boundary conditions: 
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where 𝑈𝑚𝑛
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0  are unknown coefficients to be determined. Substituting Eqs. (12) into Eqs. (8) 

leads to the following matrix form of set of differential equations: 
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It should be mentioned that [M] and [K] are symmetric stiffness and mass matrices, respectively. The fundamental 
frequency of the panels can be obtained by solving the following eigenvalue problem: 

     214 0K M 
 

where ω is fundamental frequency of the FG panel. The smallest eigenvalue obtained from Eq. (14) is called the 
fundamental vibration frequency. Admissible trigonometric expansions for different boundary conditions of doubly-
curved nano-panels are presented in Table 1, in which the symbols SS, CC, and FF stand for simply-supported, 
clamped and free edges, respectively. 
 

Table 1: Admissible functions for FG doubly-curved nano-panels for alternative boundary conditions (Reddy 2004). 

B.C. 
Admissible Functions 

Ф1m(x) Ф2m(x) Ф1n(y) Ф2n(y) 

SSSS* 

 
cos(λmx) 

 
sin(λmx) 

 
sin(λny) 

 
cos(λny) 

 

CSCS* 

 
sin(2λmx) 

 
cos(2λmx)-1 

 
sin(λny) 

 
cos(λny) 

 

CCCC* 

 
cos(2λmx)-1 

 
sin(2λmx) 

 
sin(2λny) 

 
cos(2λny)-1 

 

FSFS** cos(λmx)+cosh(λmx)-
αm(sin(λmx)+sinh(λmx)) 

sin(λmx)+sinh(λmx)-
αm(cos(λmx)+cosh(λmx)) 

sin(λny) cos(λny) 

* For SSSS, CSCS, and CCCC boundary conditions, λm=mπ/a and λn=nπ/b, in which m and n are the half-wave 
numbers in x and y directions. 
** For FSFS boundary condition λm = (2m+1)π/2a and λn=nπ/b with α1 =1.0178, α2 =0.99922, and αm =1 m>2. 

 
5 HOMOGENIZED PROPERTIES OF FGMS 
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Since volume fraction is gradually changing through the thickness of the size-dependent doubly-curved FG panels, 
it is reasonable to assume a representative volume element (RVE) periodically repeated through the planes of the 
panel each parallel to the x-y plane. While the volume fraction of matrix (𝑉𝑓) gradually changes through the thickness 

of panels in the form of a polynomial function, homogenization technique can be used to obtain the effective 
multiphysical properties for each RVE with specific volume fraction of matrix and inclusion shape. Among alternative 
methods for homogenization, the standard mechanics homogenization is used here to estimate the mechanical 
properties of FGMs at each spatial coordinate through the panel (Hassani et al. 1998). In this approach, a portion 
of the material called as Representative Volume Element (RVE) is chosen and then the standard weak form of the 
equilibrium equation is solved by applying periodic boundary conditions and independent unit strains on the RVE. 
Thereafter, the effective mechanical properties of the material can be predicted by volumetric averaging of the 
calculated stress and strain in the RVE (Akbarzadeh et al. 2016): 

 
1

15  ijkl ijmn mnkl RVE

RVE

C C M dV
V

   

where C̅ijkl is the effective stiffness tensor, VRVE represents the volume of the RVE (replaced by the area ARVE for 

planar RVEs), 𝐶𝑖𝑗𝑚𝑛 is the stiffness tensor, and Mmnkl stands for the local structural tensor, which relates the average 

strain 𝜀𝑘̅𝑙 and local or microstructural strain 𝜀𝑖𝑗 as 𝜀𝑖𝑗 = 𝑀𝑖𝑗𝑘𝑙𝜀𝑘̅𝑙. To examine the effect of matrix material on the 

effective properties of the particulate composites and FGMs, three different materials summarized in Table 2 are 
considered in this paper. 
 

Table 2: Mechanical properties of matrixes and inclusion considered in this study (Doghri et al. 1998). 

 Material Young’s modulus (GPa) Poisson’s ratio 

Matrix 

Epoxy 3.16 0.35 

Aluminum alloy 75 0.30 

Low carbon steel 210 0.30 

Inclusion Silica 73.1 0.18 

 
6 RESULTS AND DISCUSSION 

In this section, the vibration responses of size-dependent FG doubly-curved panels are investigated in this 
section. The size-dependent FG doubly-curved panel can be composed of square or circular silica inclusions with 
a continuous transition of matrix volume fraction (Vf), made of three different materials, through the panel thickness. 

The top of the doubly-curved nano-panel is matrix rich (𝑉𝑓 = 1), while the bottom side is inclusion rich (𝑉𝑓 = 0). 

Numerical results are presented for FG panels composed of low-carbon steel as a matrix with Silica inclusions of 
circular topology (unless otherwise specified). Time, moving point load velocity (V) used for forced vibration 
analysis, and fundamental frequency (ω) are given in the following non-dimensional form: 

 
2

16 , ,m m m

m m m

E Et a
t V V

a h E


 

 
    

 
6.1 Verification studies 

In order to validate the accuracy of the developed model and proposed methodology, numerical results are first 
compared with existing data presented in the literature. As a result, non-dimensional fundamental frequencies 
obtained by the developed model for simply-supported FG square nano-plates are compared with those of reported 
in reference (Thai et al. 2013) based on the Mindlin plate theory and modified couple stress theory. Table 3 presents 
the fundamental frequency of a simply-supported FG square nano-plates with p = 1 for various length-to-thickness 
ratio (a/h). As seen in Table 3, the maximum difference of 0.4% is found between the results, confirming the 
accuracy of our developed methodology (Thai et al. 2013). 

 
Table 3: Comparison of non-dimensional fundamental frequency (𝜔̅) of a simply-supported square FG nano-plate. 

a/h l/h Present Thai et al. 2013 

5 

0 
0.2 
0.4 
0.6 

4.7865 
5.3062 
6.4105 
7.8895 

4.8744 
5.3239  
6.4600  
7.9298  
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0.8 
1 
 

9.4602 
11.0125 

 

9.4998  
11.0451 

 

10 

0 
0.2 
0.4 
0.6 
0.8 
1 

5.2235 
5.7145 
6.9187 
8.6098 
10.4264 
12.3846 

5.2697  
5.7518  
6.9920  
8.6477  
10.4942  
12.4128 

 

 
6.2 Free and forced vibration analysis 

In this section, free and forced vibration analyses of size-dependent FG doubly-curved panels are examined. 
Effects of the thickness-to-length ratio (h/a), and the curvature-to-length ratio (R/a) on the non-dimensional 
fundamental frequency (𝜔̅) for an FG square nano-plate (ℓ/h = 0.1, and p = 1) considering four different boundary 
conditions mentioned in Table 1 are presented in Figs. 2a and 2b, respectively. Observing Fig. 2a, increasing value 
of the thickness-to-length ratio leads to a decrease the fundamental frequency. It is seen from Fig. 2b that as the 
curvature-to-length ratio increases, the frequency decreases to a constant value, which is different for each 
boundary conditions. The effects of the curvature-to-length ratio on the frequency are more significant when the 
doubly-curved nano-panel has the edge conditions of SSSS, or FSFS. 

 

 
(a) 

 
(b) 

Figure 2: Effect of (a) thickness-to-length ratio (h/a), and (b) curvature-to-length ratio (R/a) on the non-dimensional 

fundamental frequency (𝝎̅) of an FG square doubly-curved nano-panel. 
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Figure 3: Effect of length scale (l/h) on the non-dimensional fundamental frequency (𝝎̅) of an FG square nano-plate. 

 
Figure 3 demonstrates the effect of non-dimensional length scale (ℓ/h) on free vibration behavior of an FG square 
nano-plate (a/h = 20, and p = 1) for all four boundary conditions. It is seen that the fundamental frequencies (𝜔̅) of 
the nano-plates increase with an increase in the length scale. Moreover, the ratio of the increase in the fundamental 
frequency varies for different boundary conditions. Figure 4 presents the dynamic response of an FG square nano-
plate (ℓ/h = 0.1, p = 1, and a/h = 20). The FG nano-plate is subjected to a moving point load traveling at the middle 

of nano-plate (y=b/2) along the length with non-dimensional velocity 𝑉̅ = 0.05. Figure 4 shows that the temporal 

evolution of deflection at the plate midpoint possesses two response domains including forced (𝑡̅ ≤ 𝑡̅exit = 20) and 
free (𝑡̅exit ≤ 𝑡̅ = 20) vibration parts. A moving transverse point load is applied at the top of the nano-plate and causes 

the forced vibration up to the exit time of the point load 𝑡̅exit. Once the moving point load leaves the nano-plate, the 
FG nano-plate experiences the free-vibration caused by the inertial disturbance of the point load in the force-
vibration domain. 
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Figure 4: Temporal response of the midpoint deflection of an FG square nano-plate subjected to a moving point load. 

 
7 CONCLUSION 

The modified couple stress theory and FSDT are used to investigate the effects of material and geometrical 
parameters on the free and forced vibration of size-dependent FG doubly-curved panels with considering different 
sets of boundary conditions. Effective mechanical properties of FG doubly curved panels are estimated using the 
standard mechanics homogenization technique. The nano-panels considered in this paper are spherical, saddle, 
cylindrical, and flat panels. The effects of material variation, aspect ratio, curvature, and length scale on the 
fundamental frequencies of size-dependent FG doubly-curved panels are studied for alternative boundary 
conditions to provide a robust framework for designing advanced nano/micro scale panels. The major findings of 
this study can be highlighted as: 

• Increasing the length scale causes a higher fundamental frequency for size-dependent FG doubly-curved 
panels. 

• Fundamental frequencies of size-dependent two-phase FG doubly-curved panels with square inclusions are up 
to 3% higher than those of FG panels are with circular inclusions. 
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