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Abstract: Stainless steel is characterised by its nonlinear stress-strain behaviour with significant strain 
hardening. However, currently available design codes treat it as elastic and perfectly plastic material like 
carbon steel, which leads to conservative predictions.  A new design approach called the Continuous 
Strength Method (CSM) has recently been developed for nonlinear metallic materials to exploit the 
beneficial effect of strain hardening and to eliminate the effective width approach. Recently a proposal was 
made to calculate the buckling capacity of rectangular hollow sections (RHS) and square hollow sections 
(SHS) combining CSM with Perry curves. In this paper, that proposal is extended for welded I-section. 
Using finite element technique the behaviour of welded I-section was investigated for major and minor axis 
buckling. It is observed that, behaviour of column buckling about major axis is different from that of minor 
axis buckling and required separate column curves.  It is also found that, cross section slenderness λp has 
a significant effect on column capacity. The shapes of column curves are mostly affected by λp. Hence 
imperfection factor η, as used in Perry formulations, is expressed as a sigmoidal function where coefficients 
of the sigmoidal function were expressed as a function of λp. This technique yields separate column curves 
for different λp values. Different functions for the coefficients are proposed for major and minor axis buckling.  
Performance of the proposed technique is compared with European guidelines. 

1 INTRODUCTION 

Stainless steel is a promising material in the construction industry due to its obvious beneficial properties 
such as corrosion resistance, aesthetics and negligible maintenance cost. Its stress-strain behaviour is non-
linear in nature with no definite yield point. It has significant strain hardening strength. However, current 
design codes(EN 1993-1-4 2006, SEI/ASCE8-02 2002, AS/NZS 4673 2001) treat stainless steel like carbon 
steel ignoring its non-linear behaviour and not utilizing its strain hardening benefits. For non-linear metallic 
material like stainless steel, the Continuous Strength Method (CSM)(Gardner and Nethercot 2004, Ashraf, 
Gardner, and Nethercot 2006) was evolved. CSM is a strain based design method that incorporates 
material nonlinearity, exploits strain hardening and incorporates element interactions in predicting 
resistances at the cross-section level. With the recent development of CSM (Afshan and Gardner 2013, 
Ahmed, Ashraf, and Anwar-Us-Saadat 2016) cross-section capacity for both stocky and slender cross-
section can be predicted through simple formulas with simplified bilinear material model and without 
calculating the effective area. Therefore, there is scope to use the CSM formulas for prediction the buckling 
capacity of compression member. 

The buckling resistance of stainless steel columns are normally calculated through two different 
approaches: tangential stiffness method and Perry formulations. SEI/ASCE8-02 (2002) and AS/NZS 4673 
(2001) codes use the tangential stiffness method that is an iterative process. In the tangential stiffness 
method, material nonlinearity is considered through instantaneous tangent modulus but there is no 
provision for considering imperfection of the member and this method is not applicable for welded sections.  

mailto:Shameem.Ahmed@student.adfa.edu.au


 

   

EMM545-2 

On the other hand, Eurocode (EN 1993-1-4 2006) adapted Perry curves. This is a direct method specifying 
separate curves for different types of cross-sections based on imperfection parameter. However, Perry 
curves do not incorporate the material non-linearity. Through numerical analysis, Rasmussen and Rondal 
(1997) showed that different column curves are necessary to predict the buckling resistance of different 
grades of stainless steel as their nonlinearity varies a lot from grade to grade. Hradil, Fülöp, and Talja 
(2012) tried to include the material non linearity in Perry curves by defining transformed slenderness and 
but their procedure was iterative as they used tangent modulus. Shu, Zheng, and Xin (2014) proposed two 
base curves and some complicated transfer formulas which could be used to develop multiple curves from 
two base curves to cover different grades of stainless steel.  All of the aforementioned methods use the 
effective area for slender cross-sections. Huang and Young (2013) proposed a method using full cross 
section area and material property measured by stub column test to predict the column capacity. Recently 
Ahmed and Ashraf (2017) proposed new buckling formulas for stainless steel hollow sections based on 
Perry curves and buckling stress of CSM. 

The aim of the current study is to develop a simple design method to determine the buckling resistance of 
stainless steel welded I-section columns that can explore all the benefits of stainless steel.  For this, finite 
element (FE) models were developed and verified with test results. The verified model was used to identify 
the influential parameters affecting the column curves through a parametric study. Later FE results were 
used to develop Perry type column curves for welded I-section based on CSM design principles. Finally, 
the predictions of the newly proposed formulas were compared with FF results and predictions of other 
codes.  

2  CURRENT DESIGN METHODS FOR BUCKLING RESISTANCE 

The tangential stiffness method and Perry-Robertson formulations are two widely used methods to 
determine the buckling resistance of steel columns. Like carbon steel, the Perry type equations were  
adopted in Eurocode (EC3) (EN 1993-1-4 2006) for stainless steel columns. Buckling equations currently 
used in EC3 are presented in Eq. 1 to 5, where Ag is the gross cross-sectional area, fy is the 0.2% proof 
stress (σ0.2), χ is the buckling reduction factor, Aeff is the effective cross-sectional area, λ is the non-
dimensional slenderness of the column and Ncr is the elastic buckling load of the column based on gross 
area. Effective cross-section properties are used to deal with the local buckling of slender cross-sections 
of class 4. Four column curves were proposed for different cross-section and loading types and they differ 
from each other by varying a linear function of imperfection parameter η. The suggested imperfection 
parameter η is expressed using the relationship, η= α(λ-λ0) where α and λ0 factors vary depending on cross-
section types. The effect of residual stress of the welded section is also included in η. Stainless steel is a 
highly nonlinear material and its nonlinearity significantly varies from grade to grade. Rasmussen and 
Rondal (1997) and Ahmed and Ashraf (2017) showed that these nonlinearity has a significant effect on 
column resistance. However, in the current EC3 gridlines the effect of material nonlinearity is not 
recognised.  

Tangential stiffness method is based on Euler formulas. American and Australian codes (SEI/ASCE8-02 
2002, AS/NZS 4673 2001), follow the tangential stiffness approach  to determine the column resistance. 
This method involves a simple equation as given in Eq. 6, where Fn is buckling stress. Fn can be calculated 
by Eq. 7 which requires iteration as Fn and the tangent modulus (Et) are interdependent. By using Et, the 
effect of material nonlinearity of stainless steel is incorporated in the tangential stiffness method. Though 
member imperfection as well as residual stress have a significant effect on column resistance, they are not 
considered in this approach. All design codes limit the maximum compression capacity of a section to its 
squash load ignoring the strain hardening strength of stainless steel. 

[1] Nu = χAgfy   for Class 1, 2 and 3 cross-sections 

[2] Nu = χAefffy  for Class 4 cross-sections 

[3]  λ = √
Agfy

Ncr
 for Class 1, 2 and 3 cross-sections 
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[4] λ = √
Aefffy

Ncr
 for Class 4 cross-sections 

[5] χ =
1

ϕ+√ϕ2−λ2
 ≤ 1.0  where,  ϕ = 0.5[1 + η + λ2 ] and η = α(λ − λ0) 

[6] Nu = AeffFn 

[7] Fn =
π2Et

(KL r⁄ )2   ≤ fy 

3  THE CONTINUOUS STRENGTH METHOD (CSM) 

The Continuous Strength Method (CSM) is a strain based design approach where a base curve relates to 
the deformation capacity of the section and a material model relates to the deformation capacity with 
buckling stress. Gardner and Nethercot (2004) first proposed this method. Recently Afshan and Gardner 
(2013) proposed a new base curve as shown in Eq. 8, where normalized deformation capacity εcsm/εy was 

expressed as a function of cross-section slenderness λp for stocky sections. They set the limiting cross-
section slenderness value as 0.68. Up to this limit the cross-section is considered as stocky section and 
over this limit the cross-section is considered as slender section. They also proposed to use the elastic 
buckling capacity of a full cross section to determine λp which includes the contributions of element 
interaction appropriately. Instead of complex Ramberg-Osgood model, they used a simple bi-linear material 
model, which is able to explore the strain hardening benefit for stocky cross-sections and simplify the 
calculation process. Having determined the normalised deformation capacity of the cross-section from the 
design base curve and using the proposed material model, the buckling stress fcsm which a cross-section 
can achieve prior to local buckling can be determined using Eq. 9. 

[8] 
𝜀𝑐𝑠𝑚

𝜀𝑦
 = 

0.25

𝜆𝑝
3.6   but      

𝜀𝑐𝑠𝑚

𝜀𝑦
≤ 15,

0.1𝜀𝑢

𝜀𝑦
   for 𝜆𝑝 ≤ 0.68 

[9] 𝑓𝑐𝑠𝑚 = 𝑓𝑦 + 𝐸𝑠ℎ𝜀𝑦 (
𝜀𝑐𝑠𝑚

𝜀𝑦
− 1)       for 𝜆𝑝 ≤ 0.68 

Ahmed, Ashraf, and Anwar-Us-Saadat (2016) introduced a new parameter Equivalent Elastic Deformation 
Capacity (εe,ev) to extended the CSM for slender cross-sections. They considered the base curve (Eq. 8) 

for the full range of cross-section slenderness  and developed a relationship between εe,ev  and εcsm by Eq. 

10 where C is a constant and depends on the type of cross-sections (for I-section a=3.05 and b=3.0). For 

λp > 0.68, the buckling stress fcsm can be calculated by multiplying εe,ev with the Young’s modulus E as 

shown in Eq. 11. 

[10] 𝜀𝑒,𝑒𝑣 = 𝐶𝜀𝑐𝑠𝑚          for  𝜆𝑝 > 0.68,   where  𝐶 = 𝑎𝜆𝑝
𝑏
 

[11] 𝑓𝑐𝑠𝑚 = 𝜀𝑒,𝑒𝑣𝐸 = 𝐶𝜀𝑐𝑠𝑚𝐸        for  𝜆𝑝 > 0.68  

Recently Ahmed and Ashraf (2017) proposed new buckling formulas for RHS and SHS columns using fcsm 
based on the Perry formulations. In their proposal, buckling resistance of a column may be determined by 
using the Eq. 12. Non-dimensional column slenderness λcsm may be obtained using the modified definition 
as shown in Eq. 13, where Nu is the buckling resistance of the member, χ is the reduction factor for buckling 
as given in Eq. 5, Ag is the gross cross-sectional area, and Ncr is the elastic critical buckling capacity of the 
member based on Ag. They observed that non-dimensional proof stress (e = fy/E), strain hardening 
exponent n and λp have a significant effect on column curves. They modified λcsm to reduced the effect of 
e and n and introduced modified non dimensional slenderness λm. Modifications of λcsm are shown in Eq. 
14, where C is the modification factor for e and Cn is the modification factor for n. The reduction factor of 
the Perry curves similar to current EC3 was adopted in their study replacing the non-dimensional 
slenderness λ by λm as given in Eq. 15. They proposed a sigmoidal function of λm for the imperfection factor 
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η as shown in Eq 16 where A, B and W are the coefficients of the sigmoidal function.  Values of A and B 
were expressed as functions of λp, which produce different column curves for different λp values. 

[12] 𝑁𝑢 = 𝜒𝐴𝑔𝑓𝑐𝑠𝑚   

[13]  𝜆𝑐𝑠𝑚 = √
𝐴𝑔𝑓𝑐𝑠𝑚

𝑁𝑐𝑟
  

[14] 𝜆𝑚 = 𝜆𝑐𝑠𝑚 + 𝐶𝑒 +
5−𝑛

5
𝐶𝑛 ≥ 0 

[15] 𝜒 =
1

𝜙+√𝜙2−𝜆𝑚
2

 ≤ 1.0  where,  𝜙 = 0.5[1 + 𝜂 + 𝜆𝑚
2  ]  

[16] 𝜂 =
𝐴

1+𝑒𝑥𝑝−(𝜆𝑚−𝐵) 𝑊⁄ − 0.25 

4  NUMERICAL MODEL 

The Commercial finite element analysis package ABAQUS was used for numerical simulation. Initially, the 
developed FE models were validated against test results and later verified FE models were used to perform 
parametric study to identify the influence of different parameters on column resistance. Finally, these FE 
results were used to propose new column curves. 

In the FE model, four-noded doubly curved shell elements with reduced integration were used with mesh 
sizes not greater than 5 mm along the transverse direction and 15 mm along the longitudinal direction for 
flanges and web of I-section. The two-stage Ramberg–Osgood (R–O) material model proposed by 
Rasmussen (2003), with recent modifications proposed by Arrayago, Real, and Gardner (2015), was used 
in developing the FE models. Basic material properties such as Young’s modulus (E), proof stress (σ0.2) 
and strain hardening exponent (n) were considered as 200 GPa, 400MPa and 7 respectively.  In this study, 
both local and global geometric imperfections were considered. Eigenvalue analysis was performed and 
the corresponding elastic buckling mode was used to simulate the distribution of imperfections. The 
amplitude of local geometric imperfection was considered as d/200 and the amplitude of global imperfection 
was considered as L/1500, where d was the unsupported width of the flange and L was the length of the 
column. Membrane residual stresses are developed in I-sections due to welding, which induces tensile 
stress in the vicinity of the welds with compressive stress away from those regions. Residual stresses were 
incorporated in the FE model according to the proposal of Yuan, Wang, Shi, et al. (2014), where the 

maximum tensile stress was taken as 0.80.2.  

Columns were considered as pin supported at both ends. All nodes at the bottom and the top ends were 
coupled with two reference points located at the centroid of the corresponding section. Pin support 
conditions were applied to those reference points allowing for longitudinal translation at the top. Columns 
subjected to buckle around major axis were laterally supported at mid height to prevent minor axis buckling.   
Displacements were applied at the top reference point to simulate column tests. 

5  VERIFICATION OF THE FE MODEL 

The accuracy of the FE model was verified against ten test results of welded I-section columns reported in 
Yuan, Wang, Gardner, et al. (2014) and Yang et al. (2016). Among test results, five columns were subjected 
to major axis buckling and the rest of the columns were tested for minor axis buckling. The comparison of 
ultimate load (Nu) of FE models with those obtained from tests were shown in Table 1. FE results showed 
good accuracy in predicting the test results as the average ratios of the ultimate loads obtained from FE 
models and test results was 1.00 with a coefficient of variation (COV) of 0.08.  In Figure 1, full load-deflection 
responses of FE model of two columns, one buckled about minor axis (I304-432-i) and another buckled 
about major axis (I304-2000), were compared with test responses and they showed good agreement. 
Overall comparisons shows that the adopted FE model are capable of predicting the behaviours of welded 
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I-section stainless steel columns, and could be used to generate additional results for parametric study and 
to develop column curves. 

 

Table 1: Comparison of FE and test results.  

Reference Specimen Id NFE/Ntest 

Minor axis 
buckling(Yuan, 
Wang, Gardner, 

et al. 2014) 

I304-252-i 0.93 
I304-312-i 0.89 
I304-372-i 0.90 
I304-432-i 1.00 
I304-492-i 1.13 

Major axis 
buckling(Yang et 

al. 2016) 

I304-2000 1.03 
I304-3000 0.97 
I304-3500 0.96 
I304-4000 1.08 
I304-4500 1.08 

Average  1.00 
COV  0.08 

 

 

 

 

Figure 1: Comparison of load-deformation curves 
for i-section columns 

6  PARAMETRIC STUDY 

The verified FE modelling technique was used to identify the parameters that significantly affect the buckling 
resistance of stainless steel columns through a parametric study. Ahmed and Ashraf (2017) found that 
cross section slenderness λp has a significant effect on column curves of RHS and SHS columns. Therefore, 
the effect of λp on column curves of welded I-section was investigated here. In this study, the effect of other 
cross-sectional properties like the ratio of width and height (B/H) of the section and   the ratio of flange 
thickness and web thickness (tf/tw) were also examined. Both major axis buckling and minor axis buckling 
were considered here. Three values of B/H vary from 1.0 to 0.5 (1.0, 0.67 and 0.5) and three values of tf/tw 
(1.0, 1.5 and 2.0) were considered to cover a wide range of I-sections. Effects of B/H and tf/tw were observed 
on both stocky and slender cross-sections. Cross section slenderness of stocky section was 0.48 and for 
slender sections was 0.88. Seven values of cross-section slenderness ranging from 0.39 to 0.98 were 
considered to evaluate the effect of λp on column curves of I-sections. The effect of cross-section 
slenderness was studied on the cross-sections having B/H = 0.67 and tf/tw = 1.5. λp was calculated 
according to the proposal reported in Afshan and Gardner (2013) where the elastic buckling capacity of the 
full cross section (σcr,cs ) was determined using CUFSM. A total 23 different I-sections were analysed for 
major and minor axis buckling and their cross sectional properties are shown in Table 2. For each I-section, 
columns of 15 different slenderness λcsm (0.2, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8 
and 2.0) were analyzed to get the full range of column curves. A total of 690 models were analysed to 
obtain a thorough understanding of buckling behaviour of stainless steel I-section columns. 

Table 2: Cross-sectional properties of I-sections 

Sl. No. H 
(mm) 

B 
(mm) 

tf/tw 

(mm/mm) 

1-6 150 150 8.05/8.05, 4.54/4.54, 9.0/6.0, 5.1/3.4, 9.45/4.73, 5.47/2.74 

7-17 225 150 
9.6/9.6, 5.38/5.38, 14.15/9.43, 11.5/7.67, 9.65/6.43, 8.35/5.57, 7.35/4.9, 

6.56/4.37, 5.93/3.95, 13.83/6.92, 8.03/4.02 

18-23 300 150 12.17/12.17, 6.83/6.83, 15.48/10.32, 8.82/5.88, 19.4/9.7, 11.22/5.61 
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7  ANALYSIS OF FE RESULTS 

To observe the effect of different parameters, column curves are plotted in Figures 2 to 4. In these column 

curves, non-dimensional column strength or reduction factor χ was calculated as 
𝑁𝑢,𝐹𝐸

𝐴𝑔𝑓𝑐𝑠𝑚
. In Figure 2, the 

influence of λp on column curves is shown for major axis buckling and minor axis buckling respectively. It 
is observed that cross-section slenderness λp has a significant effect on column curves of welded I-section 
and it is similar to the effect observed on the column curves of RHS and SHS (Ahmed and Ashraf 2017). 
In both cases, column curves move upward with increasing values of λp i.e. the reduction factor χ is higher 
for relatively slender cross-sections with higher value of λp. Shapes of column curves also depend on λp. 
For slender cross-sections (with higher value of λp), the column resistance approaches to its cross-section 
capacity i.e. χ approaches 1.00 at a relatively higher value of λm when compared against stocky cross-
sections (with smaller λp).The effect of λp is more prominent at the intermediate portion of column curves 
and diminishes with the increase of λm. 

 

Figure 2: Column curves for buckling of welded I-section for different λp values  

Figures 3 and 4 show the effect of B/H and tf/tw on column curves respectively for both stocky and slender 
cross-sections. It was observed that B/H and tf/tw have no significant effect on column curves of stocky 
sections (λp=0.48). In case of slender sections (λp = 0.88), B/H showed some minor effect on column curves 
at low λm values. From Figure 4 and 5 it is also clear that column resistance for major axis buckling is higher 
than that of minor axis buckling. This effect is more prominent at the intermediate portion of column curves 
and diminishes with the increase or decrease of λm. From this analysis, it is clear that separate column 
curves are required for major axis buckling and minor axis buckling and the effect of λp should be included 
in the formulas. 

 
Figure 3: Column curves of welded I-sections for different B/H ratios 
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Figure 4: Column curves of welded I-sections for different tf/tw ratios 

8  IMPERFECTION FACTOR 𝜼 FOR WELDED I-SECTION 

In this study, an attempt was made to predict the buckling capacity of welded I-section columns based on 
the Perry curves proposed by Ahmed and Ashraf (2017) as given in Eq. 12 to 16. To get an appropriate 
function of imperfection factor η for I-section, values of η were calculated from the FE results and were 
plotted against λm for different values of λp and shown in Figure 5. From this figure, it is clear that like column 
curves, λp has a significant influence on η and the variation of η with λm can be well represented by the 
sigmoidal function of Eq. 16. The coefficients A, B and W of the sigmoidal function were determined for I-
sections for both major and minor axis buckling. Value of A and B depend on λp. Eq. 17 and 18 gives the 
value of A and B for major axis buckling and Eq. 19 and 20 gives the values for minor axis buckling. A 
constant value of W = 0.4 is proposed for both major axis buckling and minor axis buckling. 

  

Figure 5: η calculated from FE results and proposed curves of η for different λp values 

 

[17] 𝐴 = −0.32𝜆𝑝 + 1.55  

[18] 𝐵 = 0.3𝜆𝑝 + 0.4 ≤ 0.65  

[19] 𝐴 = −0.5𝜆𝑝 + 1.65  

[20] 𝐵 = 0.1𝜆𝑝 + 0.72 ≤ 0.80  
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9  COMPARISON OF THE PROPOSED METHOD 

The accuracy of the proposed method was verified with FE results and was compared with EC3. The key 
features of the comparison are shown in Table 3. It is observed that proposed CSM formula predictions are 
more accurate and more consistent. For both major axis buckling and minor axis buckling, the average of 
the ratio of CSM predictions and FE results was 0.98 where these average of EC3 predictions were 0.93 
and 0.89 respectively. The coefficient of variation (COV) for CSM predictions is always less than that of 
EC3 predictions. Figures 6 also illustrates the comparison of CSM predictions and EC3 predictions with FE 
results. Both the figures show that the performance of CSM formulas is more accurate than EC3 for the full 
slenderness range.  

Table 3: Performance of the proposed CSM technique and EC3 

Loading condition Ncsm/NFE NEC3/NFE 

 Average COV Average COV 

Major axis buckling 0.99 0.03 0.93 0.04 
Minor axis buckling 0.97 0.04 0.89 0.05 

 

 

Figure 6: Comparison of CSM and EC3 predictions for major and minor axis buckling 

10  CONCLUSION  

Currently available design codes of stainless steel do not address its nonlinear material behaviour and do 
not consider the strain hardening benefits. They also follow the calculation intensive effective width 
approach for slender cross-sections.  In this study, new design formulas for predicting buckling resistance 
were proposed for welded I-sections. In this proposal, the buckling stress fcsm of CSM is used instead of 
material yield stress in basic Perry curves. A parametric study was performed using verified FE model to 
observe the effect of cross-section slender, B/H and tf/tw . It is found that B/H and tf/tw have no significant 
effect on column curves and can be ignored in the formulation of column curve. However, cross-section 
slender has a significant effect on column curves of welded I-sections. Hence, the imperfection factor η was 
expressed as a sigmoidal function of λm where the coefficients of that function depend on λp. It is also 
observed that for welded I-section, column curves for major axis buckling are different from that of minor 
axis buckling. So different equations are proposed for the coefficient A and B for major and minor axis 
buckling. Due to the use of fcsm and gross cross-section area, this new method incorporates the strain 
hardening benefits and eliminates the effective area calculation. Compare to EC3, this method is simple to 
use but produced more accurate and more consistent predictions. 
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