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Abstract: This paper describes the development of Artificial Neural Network (ANN) model for the 
prediction of compressive strength of the Engineered Cementitious Composite (ECC) based on mix 
design parameters. A database consisting of large number of ECC mix designs from previous and current 
research studies are used for training and validation of ANN model. The influence of mix design 
parameters on the strength properties are evaluated to determine the appropriate input variables for the 
ANN model with optimized network architecture. The performance of ANN model is found to be good 
based on various statistical indicators. The ANN model can be used confidently for the optimization of 
ECC mix design parameters to obtain targeted strength properties. 

1 Introduction  

For decades, concrete has proven to be a suitable material in infrastructure construction and has been 
successfully used in numerous projects around the world. Over the last few years, self-consolidating 
engineered cementitious composite (ECC) has been developed with superior ductility and durability - 
which translates to speedy construction, reduced maintenance and a longer life span for the structure (Li 
& Kanda 1998; Wang & Li 2006; Sahmaran et al. 2009). Micromechanical design allows optimization of 
ECC for high performance, resulting in extreme tensile strain capacity while minimizing the amount of 
reinforcing fibers, typically less than 2% by volume. Unlike ordinary cement-based materials, ECC strain 
hardens after first cracking, similar to a ductile metal, and demonstrates a strain capacity of 300 to 500 
times greater than that of normal concrete. Even at large imposed deformation, crack width remains 
below 60 μm. With intrinsically tight crack width and high tensile ductility, ECC represents a new 
generation of high-performance concrete material that offers significant potential for resolving durability 
problem of reinforced concrete structures (Li & Kanda 1998; Wang & Li 2006; Sahmaran et al. 2009; Li 
2003; Li et al. 2002). 
 
The mechanical property of ECC, specifically strength, depends on type of the fiber and mix design 
parameters (Pan et al. 2012). The traditional mix design of ECC consists of cement, micro-silica sand, 
water, Polyvinyl Alcohol (PVA) fiber and water reducing agents. Over the years, there have been 
modifications in ECC mix designs to improve the mechanical properties and sustainability. Different types 
of fine aggregates such as iron ore tailing and crushed/mortar sand are used as replacement of 
expansive micro-silica sand. The aggregates type and strength followed by its dispersion with fibers 
influences the mechanical properties of the ECC. As a result the aggregate size has to be limited such 
that strain hardening can be obtained (Huang et al. 2013). Also different supplementary cementitious 
materials such as fly ash and slag have been incorporated into ECC as percent replacement of cement. 
Fly ash reduces the matrix toughness and it results in increasing the tensile strength (Mavani 2012). The 
type and mechanical property of fiber such as fiber’s tensile strength, aspect ratio (length over diamerter), 
and modulus of elasticity (E) have a direct impact on the strength properties (Li & Li 2011; Kong et al. 
2003).   
 
The properties of concrete vary with the variation of mix design parameters. Artificial Neural Network 
(ANN) models have been developed and used as tools for predicting mechanical and durability properties 
of concrete (Oreta & Kawashima 2003; Sadrmomtazi et al. 2013). ANN models identify the patterns 
between the input and output. One of the most common methods is the back propagation technique, 
where the input data are fed into the input layers, then passed through the hidden neurons by assigning 
certain weight and bias such that the output layer is predicted through a sigmoid transfer function (Tayfur 
et al. 2013).   
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In recent years, researchers have successfully used ANN modeling in different civil engineering 
applications including the prediction of strength of concrete and other materials. Barbuta et al. (2012) 
used ANN models for predicting the properties such as compressive and flexural strength of polymer 
concrete with varying fly ash content. Gupta et al (2006) used a number of parameters: concrete mix 
design, curing techniques, shapes and size of the concrete specimen, curing period and environmental 
conditions (such as temperature, relative humidity, wind and velocity) to determine the strength of the 
concrete (Gupta et al. 2006). Also, an ANN model was used to predict the compressive strength of 
lightweight concrete (Sadrmomtazi et al. 2013). 
 
However, no ANN model has been developed for ECC mechanical properties based on the mix design 
parameters. The purpose of this research is to develop an effective ANN model for prediction of 28-day 
compressive strength of ECC. The developed ANN model can be used to understand the relationship 
among various mix design parameters for optimization of ECC strength properties and will serve as a tool 
for the design of ECC mixtures. 
 

2 Development of artificial neural network model 

The process of developing an appropriate ANN model is to construct the effective input parameters by 
collecting the test results of wide range of ECC mix designs. Next step is to train and test the model with 
input data to achieve the desirable model output – in this case, 28 days compressive strength. In this 
research, the Levenberg Marquardt back propagation method from Matlab was used to develop the 
model. The back propagation of neural networks uses the feed-forward technique where input data are 
used in one direction to obtain the output (Kshirsagar & Rathod 2012). It is a layered structure with an 
input layer, hidden layer and an output layer (Hossain et al. 2006). The input should contain all the 
important parameters such that output will be accurate and reliable (Hossain et al. 2006). Throughout the 
propagation, the weights associated with each output are adjusted such that the error is minimized. The 
layers in between input and output are called hidden neurons. The number of hidden neurons are 
determined through the iterative process such that the Mean Squared Error (MSE) is minimized and the 
degree of agreement (ξ) approaches to 1 (Hossain et al. 2006). The degree of agreement is calculated 
from Willmot (1982) as:  
 
 

[1] ξ = 1 −
∑ (Pm−Fm)

2n
m=1

∑ [|Pm−Fmean|−|Fm−Fmean|]2
n
m=1

 

 
 
where n is the number of points, Fm is field observation; Fmean observed data points and Pm is the 
predicted data points. 
 
Information on wide range of ECC mixtures with different mix designs were collected from previous 
research studies. The strength properties of ECC depends on the types/amount of fine aggregates, water 
to binder ratio, types/percentages of supplementary cementitious materials and types/dosages  of 
superplasticizers (high-range water reducing admixtures). Beside type and dosage of fiber, geometrical 
(such as aspect ratio, ‘L/d’), and mechanical properties (such as modulus of elasticity ‘E’) influence the 28 
days compressive strength (Mavani 2012; Alilou & Teshnehlab 2010). A total of 134 ECC mixtures were 
selected from extensive literature review of research conducted from 2003 to 2012 (Sahmaran et al. 
2009; Yang 2008; Huang et al. 2013; Mavani 2012; Hong et al. 2003; Kan et al. 2010; Kim et al. 2003; 
Lepech and Li 2008; Lepech et al. 2008; Li & Li 2011; Li et al. 2008; Ozbay et al. 2012; Sahmaran et al. 
2012; Sahmaran et al. 2010; Wang & Li 2007; Wang & Li 2003; Yang et al. 2009; Yang et al. 2007; 
Huang et al. 2013).The ranges of mix design parameters are provided in Table 1.  
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Table 1: Ranges of Mix Design Data of ANN Model  

 
The weight of the Portland cement varied from 131.7 kg/m3 to 851.3 kg/m3, depending on the proportion 
of supplementary cementatious material. The selected fine aggregates for mix designs were fine micro-
silica sand, crushed sand and lightweight aggregate including iron ore tail, glass bubbles (S38, S60), 
polymeric micro-hollow bubbles (MHK) and expanded perlite. The modulus of elasticity for the Polyvinyl 
Alcohol fiber (PVA) was 42800 MPa. The aspect ratio of PVA fiber varied from 205 to 308. 
 
The target values/experimental results for the 28 days compressive strength were trained to create an 
ANN model using a supervised back-propagation technique. The input parameters (weights of mix 
designs) were fed into the network and were assigned certain weights and biases such that the outputs 
were generated. This iterative process was adjusted every round until the outputs had the least errors 
and constant values with respect to the experimental results (Yao 1999). For this research, the Levenberg 
Marquardt algotherim was selected because it had the same accuracy, and higher rate of convergence 
with respect to the other training techniques (Mukherjee & Routroy 2012). 
 
Different tests were performed to determine the optimized number of hidden neurons and to analyze the 
influence of input parameters on the output. The two tests were completed by the iterative process of 
removing an input, and observing the effect on the output. Once the input parameters were finalized, the 
number of the hidden neurons varied by trial and error to determine the optimized neurons with a least 
error on the output (Chu & Hossain 2013). Based on the training, the optimized model for the 28 days 
compressive strength was selected. Figure 1 presents the ANN model for the 28 days compressive 
strength. 
 
 

 
Figure 1: Artificial Neural Network Model 
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Max 851.3 1063 847 845 444.1 447 361 42800 308 22.4 65 

Min 131.7 0 0 0 0 0 172.7 42800 205 1.25 11.8 
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3 Results and performance evaluation for ANN model 

The target values for the 28 days compressive strength ANN model was measured using statistical tools 

including Mean Square Error (MSE), Root Mean Square Error (RMSE), fitting equation of the lines and 

the degree of agreement (ξ). Additionally, the difference between the target and experimental value for 

different statistical tools such as average (Eavg), standard deviation (Eσ,), coefficient of variance (Ecv,), 

maximum range (EMax), and minimum range (EMin ) were calculated to determine the optimized ANN 

model for the 28 days compressive Strength. 

 

 

3.1 Effect of number of hidden neurons for ANN Models 

 
All input parameters for the 28 days compressive strength were used to determine the appropriate 
number of hidden neurons. The number of hidden neurons varied from 10 to 3. Using statistical tools the 
optimized number of hidden neurons for the 28 days compressive model was selected. The effect of 
changing hidden neurons on predictability of 28 days compressive strength model is shown in Table 2 
and Figure 2 respectively.  
 
 

Table 2: Constant Input Varying Hidden Neurons 

 
 
 

 
 

Figure 2: Influence of Hidden Neurons with Constant Input  
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# 
of Hidden Neurons 

𝑃𝑝

𝑃𝑒
 ξ MSE RMSE Eavg Eσ ECV Emax Emin 

10 1.01 0.83 36.8 6.06 0.08 2.85 0.06 8.74 2.75 

9 1.02 0.87 27.8 5.28 0.34 -8.65 -0.18 1.43 6.39 

8 1.03 0.89 23.5 4.85 0.40 -6.30 -0.17 0.82 3.09 

7 1.01 0.96 9.0 3.00 0.03 -3.42 -0.07 0.02 1.10 

6 0.98 0.66 73.0 8.54 1.45 5.05 0.21 0.14 12.9 

5 0.99 0.64 72.4 8.51 2.37 -23.0 -0.41 6.58 4.60 

4 1.05 0.74 54.7 7.39 0.19 -18.3 -0.42 0.01 10.9 

3 1.05 0.66 72.4 8.51 0.24 -18.1 -0.41 7.26 10.7 
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Figure 2 (contd.): Influence of Hidden Neurons with Constant Input  

As it is evidenced from statistical tools and comparative graphs (Table 2 and Figure 2), the optimized 
number of hidden neurons for the 28 days compressive strength ANN model is 7. The seven hidden 
neurons has a good degree of agreement of 0.957, close to 1, smallest Mean Squared Error of 9.027, 
and RMSE of 3.005. The equation of the line shown in Figure 2 indicates that the experimental and model 
outputs are very close to each other, since the slope of the line is close to 1 and the y intercept is very 
small, close to 0. This indicates that there is a high correlation between the experimental and model 
outputs for the 28 days compressive strength. 
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3.2 Effect of the number of input parameters 

Different combination of input parameters with constant hidden neurons of 7 was used to obtain the 
optimal input parameters for 28 days compressive strength ANN model. One input parameter was 
eliminated and the ANN model was trained to obtain an output of 28 days compressive strength. Figure 3, 
as well as Table 3 illustrates the results for removing different input parameters for the 28 days 
compressive strength.  
 

 

 

 

 
 

Figure 3: Influence of Varying Input Parameters with Constant Hidden Neuron of 7 
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Figure 3 (contd.): Influence of Varying Input Parameters with Constant Hidden Neuron of 7 

 
 

Table 3: Varying Input, Constant Hidden Neurons  

 
 
As it is evidenced from Figure 3 and Table 3, no input parameters can be eliminated for the 28 days 
compressive strength model. Based on the provided analysis (for both tests) the optimized ANN model for 
predicting the 28 days compressive strength of ECC is 10:7:1. 
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 ξ MSE RMSE Eavg Eσ ECV Emax Emin 

PC 1.06 0.84 32.0 5.66 0.61 15.6 0.40 1.24 1.74 

Fly Ash F 1.00 0.82 36.6 6.05 0.89 5.60 0.08 0.08 4.55 

Fly Ash CI 1.01 0.94 10.9 3.30 0.12 4.31 0.10 0.38 1.55 

Micro-silica sand 1.04 0.89 23.3 4.83 0.88 5.01 0.17 1.13 3.35 

Lightweight Agg. 1.20 0.91 18.8 4.34 0.13 9..28 0.22 0.29 1.54 

Crushed sand 0.99 0.81 40.1 6.33 0.54 1.39 0.06 0.14 1.01 

Water 1.07 0.78 44.3 6.65 1.24 16.4 0.45 0.20 5.92 

E of PVA 0.98 0.83 34.7 5.89 1.90 18.7 0.33 4.21 2.84 

Aspect ratio of PVA fiber  0.99 0.92 16.4 4.50 0.75 2.24 0.01 1.27 3.32 

HRWRA 1.00 0.89 23.2 4.82 0.11 0.14 0.01 0.83 10.9 
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4 Predicting ability of Artificial Neural Network Model 

The optimized 28 days compressive strength ANN model was tested and validated on new sets of data 
within the same ranges of the model. The testing data were collected from Ryerson University laboratory 
and other scholars. The ranges of new data set are provided in Table 4 (Huang et al. 2013; Mavani 2012; 
Sahmaran et al. 2009). 
  
 

Table 4: Ranges of Testing Data for Validation of Model 

 
 
The results for validation of the 28 days compressive strength ANN model is provided in Table 5, and 
Figure 4.  
 
 
 

Table 5: Evaluating Predicted Values for ANN Model 

Validation of compressive strength 

Pp/Pe ξ MSE RMSE 

0.993 0.989 1.156 1.075 

 
 
 

 
Figure 4: Validation of ANN model based on Pp/Pe factor 

 

 
As it is observed from Table 5 and Figure 4 both degree of agreement ξ and the ratio between the model 
(Pp) and experimental (Pe) outputs are close to 1 (acceptable range) for testing and validating the 28 days 
compressive strength ANN model of 10:7:1. These statistical tools justify the validation for the 28 days 
compressive strength ANN model of 10:7:1 within the same ranges of data set. 
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5 Conclusion 

An artificial neural network (ANN) model for the prediction of the 28 days compressive strength of 
engineered cementitious composite (ECC) is developed by using mix design parameters as input 
variables. Optimized network architecture of the model is determined based on parametric studies 
considering the influence of ECC mix design parameters and hidden neuron layers. A 10:7:1 ANN model 
is found to be good in predicting the 28 days compressive strength of ECC. The model is trained band 
developed by using large number of data sets gathered from previous research studies and its 
performance is validated based on the new data sets. The developed ANN model is found to predict the 
28 days compressive strength of ECC mixture with excellent accuracy. This model can be used as a tool 
for the design of ECC mixture for desired or prediction of the 28 days compressive strength of a given 
ECC mixture within the same ranges of data set.  
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