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Abstract: At any point during a construction project various objects exist on the site (e.g. temporary 
facilities, batch plants, and tower cranes) that support project activities. Efficient arrangement of these 
objects on the site, such that it enhances the productivity, safety, and security, is referred to as site layout 
planning. As the project progresses through its activities, the supporting objects on the site will be 
subjected to change, and so will the layout of the site. These changes make the optimization of the site 
layout a challenging task. Considering the actual duration that objects exist on the site will make the 
layout planning a 4D optimization problem. This paper presents a dynamic layout planning model which 
uses a mathematical approach to develop optimum layouts. The advantage of mathematical methods lies 
in their flexibility in defining different constraints and conditions for the project. In the developed model, 
project boundary conditions such as the actual duration of objects, the workflow between objects, the 
required and available space, and site-specific constrains are defined in a set of mathematical equations. 
These equations are then solved using Generic Algebraic Modeling System (GAMS) to generate layouts 
that are optimized over the duration of the project. A computational example is provided to demonstrate 
the capabilities of the developed model. 

1 Introduction and Background 

Construction activities are supported by various objects such as temporary facilities, tower cranes, batch 
plants, and gravel depot. Site layout planning is the task of determining the optimum location of these 
objects on the site to ensure safety, productivity, and security of the project (Tommelien et al. 1992, 
Sadeghpour et al. 2004, Khalafallah and El-Rayes 2011). An efficient layout reduces the cost of material 
handling and workflow and increases the safety measures on the site (Hegazy and Elbeltagi 1999, Isaac 
et al. 2012). As the construction activities change, the required objects, and accordingly, their optimum 
location on the site is subjected to change. Reflecting these changes in the process of searching for 
optimum layout is the main challenge in dynamic site layout planning (Zouein and Tommelien 1999, 
Elbeltagi 2001, Andayesh and Sadeghpour 2011). 

Different approaches have been taken in site layout planning literature for addressing the changes in 
object requirement over the duration of the project. Static models ignore the time dimension and assume 
all objects exist on the site for the entire duration of the project (e.g. Tommelein and Zouein 1993, 
Elbeltagi and Hegazy 2001, Lam et al. 2007, Zhang and Wang 2008, Easa and Hossain 2008). This is not 
a realistic assumption. Clearly, static models do not provide the most efficient use of space. For instance 
using the static approach, for the project shown in Figure 1, although the geotechnical lab (object A) 
leaves the site in the fourth month, batch plant (object C) which enters the site in month 10 can not take 
its place. As a result, despite its limitations, static approach can offer a simplified method for generating 
layouts for project with short durations or those with abundant available site space (Andayesh and 
Sadeghpour 2012). 



 CON-175-2

ID  Construction objects Time Interval 1 
 

Time Interval 2 
 

 

A  Geotechnical Lab            
   

B  Rebar Workshop            
     

C  Batch Plant           
        

D  Site Office            
        

E  Gravel Depot            
            0     2     4     6     8    10    12   14   16   18 

Figure 1: The time lines for construction objects 

The next generation of site layout models included the time dimension in the planning process by dividing 
the project duration into several time intervals and generating an optimum partial layout for each (e.g. 
Zouein and Tommelein 1999, Elbeltagi et al. 2004, Sadeghpour et al 2006, El-Rayes and Said 2009, Ning 
et al. 2010, Jiuping and Zongmin 2012). In this phased approach, the models can reflect changes in the 
site from one partial layout to another. However, objects that belong to the same time interval are not 
allowed to reuse the same space, even if they do not exist on the site at the same time. For instance, if 
the aforementioned project duration is divided into two time intervals at the end of month 10 as shown in 
Figure 1, Geotechnical Lab and Rebar Workshop (objects A and B) can not use the same space even 
though they do not exist on the site at the same time. In addition, partial layouts are often optimized in a 
chronological sequence. As a result, the locations of objects located in later time intervals are highly 
influenced by early ones. For instance in Figure 1, the Site Office (object D) has a better chance than the 
batch plant (object C) to get a desired location since it is located in the first time interval. However, the 
main limitation of the phased approach is that a collection of separately optimized partial layouts does not 
necessary result in an overall optimum layout (El-Rayes and Said 2009, Andayesh and Sadeghpour 
2013). 

To make the most efficient use of site space, a dynamic site layout model is required that considers the 
actual duration of objects on the site in the optimization process. Such model will allow the reuse of space 
over time, and at the same time optimizes the location of objects over the duration of the project (4D 
optimization). The main challenge in dynamic planning is in converging the optimization as the number of 
variables and constraints gets too large. The authors have previously developed a dynamic model for site 
layout planning that used minimum total potential energy concept from physics to reach the optimum 
layout (Andayesh and Sadeghpour 2012 and 2013). While this model was the first to generate layouts 
that are optimized over the duration of project, it was limited in terms of the type of relationships that 
could be defined between objects. This paper presents a new dynamic site layout planning model that 
uses a mathematical approach to define and solve the site layout problem. The advantage of using a 
mathematical approach is that it provides more flexibility in defining different types of relationships and 
constraints between objects. As a result, the developed model has better capabilities in reflecting the 
actual conditions that occur on a construction site. A computational example is provided to demonstrate 
the capabilities and evaluate the results of the developed model. 

2 Model Development 

The key point in the developed model is that all the elements and constraints of the problem such as 
definition of the site boundary, spatial relationships between objects, and the objective function, are 
represented through a set of equations. These equations, collectively, define the site layout problem. 
They are then solved as a mathematical optimization problem to determine the optimum arrangement of 
objects on the site. This section presents how the key components of the developed model such as the 
objective, constraints, and objects are represented with mathematical equations.   

Time (months) 
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2.1 Site layout objects 

Site layout objects are classified into two groups based on their role in the optimization: Site objects (S) 
and Construction objects (C) (Andayesh and Sadeghpour 2013). Site objects are those that have a 
known location on the site prior to the start of construction, such as the structure under construction 
whose location can be determined from the project drawings. Site objects are often permanent and 
remain on the site after the construction ends. On the other hand, the construction objects are located on 
the site temporarily to support construction activities. In fact, the aim in site layout planning is to 
determine the optimum location of these objects on the site. Offices, batch plants, and storage areas are 
examples for construction objects. In this model objects are represented by their minimum bounding circle 
to simplify the generated equations. The location of objects and the space they occupy can be 
determined by the coordinates of the center of their minimum bounding circles and their radius. The 
following notation is used through this paper to refer to these values: 

 (XSi , YSi): coordinates of the center of the Site object i  

 (XCi , YCi): coordinates of the Construction object i  

 Ri : Radius of object i 

The radius of minimum bounding circles for both type of objects and the center of site objects are known 
variables, while the coordinates of the center of construction objects are the unknown variables in the 
layout optimization problem. The efficiency of a layout depends on how well the construction objects are 
located in the available space on the site. 

2.2 Objective 

Many of the productivity, safety, and security goals can be expressed using the closeness relationships. 
In term of productivity, objects that have a large workflow with one another need to be located close to 
each other to reduce the associated costs. For instance a gravel depot should be located close to the 
batch plant to reduce the cost of material handling. On the other hand, some objects need to be located 
far from one another to ensure safety in the site. For example the storage area should be located far from 
welding workshop to prevent fire hazards. The fitness of a layout in terms of closeness relationships can 
be measured using the following utility function: 

[1]  

where W ij represents the workflow between object i and j and Dij reflects the distance between them, 
which can be determined as: 

[2] 
 

where (Xi , Yi) and (Xj , Yj) represent the position of objects i and j, respectively. Closeness weights, which 
can take positive or negative values, are assigned between pairs of objects. These weights are 
determined based on the workflow and safety related issues and show how much two objects are desired 
to be located close to or far from one another (Osman et al. 2003). A larger positive closeness weight 
shows a significant workflow between two objects. Minimizing the utility function from Eq. 1 results in 
locating objects with large workflow close to each other. On the other hand, a negative weight indicates 
that the two objects need to be located far from one another. Minimizing the utility function will provide the 
optimum location for construction objects on the site based on the defined relationships between pairs of 
objects.  
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2.3 Site Boundary Constraint 

Clearly, construction objects should be located inside the site boundaries. Therefore, a constraint is 
required to ensure that this condition is fulfilled. In this model the site boundary is defined by connecting 
the boundary vertices (B1 to BL) to form the border lines of the site. The site boundary constraint is 
defined using vector calculus in mathematics. Each border line is represented by a vector (Figure 2): 

[3] 
 

 
 

in which Vl is the vector corresponding to border line l, and (XBl , YBl) is the coordinates of vertex l on the 
site boundary. 

 

 

Figure 2: Representing the site boundary constraint 

As can be inferred from Figure 2, in order to fulfill the site boundary constraint, the objects should always 
fall on the left side of the border vectors. In addition, objects need to have a minimum distance equal to 
their radius from the site boundary which can be formulated as: 

[4]  

where dlj is the shortest distance between construction object j from border vector l (Figure 2), and Rj is 
the radius of construction object j. This distance (dlj) can be determined from the cross product of border 
vector Vl and vector Vlj. Vlj is the vector that connects vertex l of the site boundary to the construction 
object j. This vector can be determined using the following equation: 

[5] 
 

where (XCj , YCj) is the position of construction object i and (XBl , YBl) is the coordinates of site boundary 
vertex l. The shortest distance of construction object j form border vector l can be determined from the 
following cross product: 

B1 

(XB1 , YB1) 

B2 

B4 

B3 

B5 

V1 

V2 

V4 

V5 

C1 

d11 V11 

V3 
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 [6] 

 

where     is the length of border line l. To ensure that all construction objects are located inside the site 
boundary, equation Eq. 4 should be satisfied for all combinations of border lines and construction objects: 

[7]  

When an object is located on the right side of a border vector, the cross product of vector Vl and vector Vlj 
will have a negative value (djl <0). This will automatically refuse the position to be an acceptable answer. 
Eq.7 ensures that all the construction objects are located on the left side of the border vectors with a 
minimum distance equal to their radius. 

2.4 Non-Overlap Constraint 

When two objects exist on the site at the same time, they can not occupy the same space on the site. 
However, objects that belong to different periods of time are allowed to reuse the same space. To avoid 
overlap for two objects that exist on the site at the same time, they should have a minimum distance of 
their radiuses from each other. This can be presented by the following equations: 

[8]  

where Dij is the distance between object i and j, and Ri and Rj are the radiuses of the objects i and j. 
When two objects do not have overlap, their distance is more than the required minimum, and 
accordingly, Eq.8 is satisfied. However, this equation does not reflect dynamic layout planning. Next 
section explains how the non-overlap constraint should be modified to reflect the duration of objects on 
the site. 

2.5 Dynamic non-overlap Constraint 

A dynamic layout model allows objects from different periods of time to reuse the same space on the site. 
For instance in Figure 1, the space of geotechnical lab (object A) can be used by rebar workshop, batch 
plant, or gravel depot (objects B, C, or E, respectively). However, if the non-overlap constraints presented 
in Eq. 8 is applied to all objects, none of them will be able to reuse the same space. A binary time index 
(Tij) between all pairs of objects is defined in the developed model to indicate which pair of objects exist 
on the site at the same time and which pairs do not. This index is defined as follow: 

[9] 
 

The above time indices are applied to Eq. 8 to develop the dynamic non-overlap constraint: 

[10]  

In this equations when the two objects do not exist on the site at the same time (time index=0), the right 
side of the equation equals zero, and accordingly, the constraint will be satisfied regardless of the 
distance between objects. This means that the objects can occupy the same space on the site. This 
constraint enables the model to consider the effect of time on the optimization process. 
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2.6 Minimum Distance Constraint 

In some cases two objects are required to have a minimum distance from one another. For example, a 
resting facility needs to have a minimum safety distance from a tower crane. This constraint can be 
satisfied by adding the minimum required distance (Dm) to the right side of equation Eq. 10: 

[11]  

2.7 Adjacency Constraint 

Some objects are required to be located adjacent to each other. For instance a parking lot needs to be 
adjacent to the offices. This constraint is a special case for non-overlap constraint which can be reached 
by satisfying the following equation: 

[12]  

2.8 Solving Multi-Equations 

To determine the optimum layout, the equations explained above should be solved using techniques from 
mathematics. Complicated problems such as dynamic layout planning can be solved using strong 
mathematic software tools such as GAMS and LINGO. These tools provide different solvers which each is 
useful for a specific type of mathematic problems. The developed model uses GAMS software and 
selects BARON solver for the layout optimization problem. This solver uses Branch-And-Reduce 
Optimization Navigator (BARON) technique which guarantees reaching the optimum answer for non-
linear optimization problems (Sahinidis and Tawarmalani 2011). This solver can ensure reaching the 
optimum location of objects since the layout planning problem is modeled using linear and non linear 
equations (Eq. 1 to Eq. 12). 

3 Computational Example 

A numerical example is used from literature to demonstrate the capabilities of the developed model in 
generating dynamic site layouts and compare its results to other methods. This example was originally 
introduced by the authors to determine the optimum layout for a project with three site objects and six 
construction objects (Andayesh and Sadeghpour 2013). The site shape and the location of the site 
objects are presented in Figure 3. This figure can be used to determine the boundary vertices and border 
vectors which will be used to satisfy site boundary constraint. Table 1 presents the radiuses for minimum 
bounding circles and summarizes the durations that objects exist on the site in the total project duration of 
10 months. Table 2 presents the closeness weights between the objects.  

 

Figure 3: Site shape, boundary vertices, and location of site objects 
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B1 

(0, 0) 
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The presented model was used to determine the optimum locations for the construction objects in the 
site. The time indices between objects were determined from the duration they exist on the site (Table 1). 
These binary indices, which are used to reflect the dynamic aspect of the model, are presented in Table 
3. In this table index zero (0) shows that the two objects do not exist on the site at the same time, and 
accordingly, they can use the same space. On the other hand, index one (1) prevents the two objects 
from occupying the same space. Other mathematic equations were formed based on the information 
given in Tables 1 to 3 and Figure 1. The minimum utility function for the example was determined to be 
40,454 which is exactly the same as the utility function found by Andayesh and Sadghpour 2013. Table 4 
summarizes the optimum coordinates for the construction objects and Figure 4 presents the optimum 
layout graphically.  

Table 1: Size and time of the existing objects 

ID  Object Name Size(m) Time (months) 
     0     1    2     3    4     5    6     7    8    9   10 

S1 Parking building 25  
           
          

S2 Shopping mall 30  
       

    
       

S3 Theatre hall 35    
         
        

C1 Rebar workshop 15  
       

    
       

C2 Material storage 17     
      

  
      

C3 Batch plant 18   
      

    
       

C4 Carpentry workshop 14    
         
         

C5 Electrical tools storage 12   
          
          

C6 Security office 15    
         
         

Table 2: Closeness weights (workflows) between objects 

ID C1 C2 C3 C4 C5 C6 

S1 120 -60 130 0 -70 150 

S2 40 -80 40 90 50 100 

S3 140 -140 135 -40 120 180 

C1 - 0 0 0 0 0 

C2 - - 0 15 0 10 

C3 - - - 0 0 0 

C4 - - - - 8 0 

C5 - - - - - 20 

C6 - - - - - - 

Table 3: Time indices between objects 

ID C1 C2 C3 C4 C5 C6 

S1 1 1 1 1 1 1 

S2 1 1 1 1 1 0 

S3 1 1 1 1 1 1 

C1 0 1 1 1 1 0 

C2 1 0 1 1 1 1 

C3 1 1 0 1 1 0 

C4 1 1 1 0 0 0 

C5 1 1 1 0 0 1 

C6 0 1 0 0 1 0 
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Table 4: Optimum locations for the construction objects 

ID C1 C2 C3 C4 C5 C6 

X 163.4 17.0 130.4 76.1 216.6 144.6 

Y 76.7 17.0 76.8 142.4 115.1 90.0 

 

Figure 4: Optimum layout for the computational example 

The optimum layout presented in Figure 4 shows that the security office (C6) has space overlap with the 
rebar workshop and the batch plant (C1 and C3). This is not a space conflict since the time index of C6 
with C1 and C3 is zero (refer to Table 3) which means the security office does not exist on the site at the 
same time as the other two objects (see Table 1). In fact, when the rebar workshop (C1) and batch plant 
(C3) leave the site by the end of seventh (7th) month, the security office reuses their space during months 
eight to ten (8 to 10). On the other hand, the rebar workshop (C1) and batch plant (C3) are required for 
the same time (time index of 1 in Table 3), and accordingly, they become adjacent other than using the 
same space. 

4 Concluding Remarks 

This paper presented a dynamic layout planning model that is able to generate layouts that are optimized 
over the entire duration of the project. The model defines the objective function and planning constraints 
by several mathematical equations. This reflects the process of searching for the optimum layout to 
solving a mathematical optimization problem. The following planning constraints are addressed in this 
model: site boundary, non-overlap, dynamic planning, minimum distance, and adjacency. The site 
boundary constraint is satisfied using vector calculus to ensure that the construction objects are located 
inside the site. Non-overlap, minimum distance, and adjacency constraints are addressed by determining 
the distance between objects. Dynamic planning, which is the main concern for generating optimum 
layouts, is addressed by determining time indices for pair of objects. A time index of zero (0) is assigned 
to a pair of objects that do not exist on the site at the same time. This means that the overlap constraint is 
satisfied automatically and the objects can occupy the same space on the site. On the other hand objects 
with time index of one (1) exist on the site at the same time and can not use the same space. The 
generated multi equations then can be solved using the existing mathematical solvers such as GAMS 
software.  

The main advantage of the mathematical model presented in this paper lies in its flexibility in addressing 
different constraints in layout planning. New constraints such as rectangular shapes for objects, rectilinear 
distances between them, and relocation costs can be added to the model to reflect the actual condition of 
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S2 

C1 

C2 
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C4 
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a construction site. Furthermore, a mathematical based model can easily be connected to other planning 
software such as MS Project and AutoCAD to form a solid site layout planning tool.  
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